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Detachments

Definition
A detachment of a graph G is formed by splitting each vertex
into one or more subvertices, and sharing the incident edges
arbitrarily among the subvertices.
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Detachments
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Detachment ↔ Amalgamation

Detachment

Amalgamation



Euler’s Königsberg Bridges Problem (1736)
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Euler’s Königsberg Bridges Problem (1736)

Question
When does a graph G have an Eulerian path/trail, i.e. a path
which uses each edge exactly once?

Equivalently (detachment formulation)
When is the path with |E(G)| edges a detachment of G?

Answer:
Precisely if G is connected, and has at most 2 vertices of odd
degree.
Similarly, the cycle C|E(G)| is a detachment of G if and only if G
is connected and every vertex has even degree.



Detachments

General Question
Given two graphs G and H, when is H a detachment of G?

When H is a path or a cycle, there are simple necessary and
sufficient conditions.

Problem
Can we get necessary and sufficient conditions when H is more
complicated, e.g. maximum degree 3, 4, etc.?



Necessary condition 0

Given two graphs G and H, when is H a detachment of G?

Necessary condition 0
G and H must have the same number of edges.



Necessary condition 1
Given two graphs G and H, when is H a detachment of G?

Necessary condition 1
The vertices of H can be partitioned into sets so that the sums
of the vertex degrees in each set give the degrees of the
vertices of G.
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Necessary condition 1
Given two graphs G and H, when is H a detachment of G?

Necessary condition 1
The vertices of H can be partitioned into sets so that the sums
of the vertex degrees in each set give the degrees of the
vertices of G.

G:

H:



Computational problem

How difficult is it to determine if one graph is a detachment of
another?

DETACHMENT

Instance Two graphs G, H.
Question Is H a detachment of G?

Since it is essential for G and H to have the same number of
edges, assume this from now on.



Detachment into two cycles

The case when the graph H is a cycle is easy. However, when
G is 4-regular, and H consists of two cycles, the problem is
NP-complete.

Proof
By reduction from HAMILTONIAN CIRCUIT for cubic graphs.



Detachment into two cycles

HAMILTONIAN CIRCUIT for cubic graphs

Does G have a Hamiltonian Circuit?

n vertices



Detachment into two cycles

G

H : two cycles, of lengths n and m − n
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Detachment into two cycles

G

H : two cycles, of lengths n and m − n



Detachment of Linear Forest is NP-complete

Detachment

Bin Packing: 5 BINS, each of capacity 4

G H
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Necessary condition 1
Given two graphs G and H, when is H a detachment of G?

Necessary condition 1
The vertices of H can be partitioned into sets so that the sums
of the vertex degrees in each set give the degrees of the
vertices of G.

G:

H:



Detachments of complete graphs

Now consider the special case when the graph G is a complete
graph Kn. This turns out to be a bit more tractable.

Necessary condition 1
The vertices of H can be partitioned into sets so that the sums
of the degrees in each set is n − 1.

Sufficient when G is complete and

1. H is a collection of paths (Georges, 1995).
2. H is a collection of cycles (Balister, 1995).
3. H is a (large) bounded degree tree (E, 1996).
4. H consists of copies of some fixed graph (Wilson, 1975).



Necessary condition 1 is insufficent in general

Necessary condition 1

G

G:

H
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Necessary condition 2

Consider graphs of maximum degree d .
A vertex degree i is rare if the number of vertices of H of
degree i is non-zero but less than a constant Rd .

Necessary condition 2
The vertices of H can be partitioned into sets with degree sum
n − 1,
and
the edges incident with rare degree vertices do not form any
loops or multiple edges between the sets.



Necessary condition 2

G:

H:
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Necessary condition 2

G:

H:



Detachments of complete graphs

Theorem
Let d be a integer. Let H be a triangle-free graph of maximum
degree d , with

(n
2

)
edges. Then (for large enough n) H is a

detachment of Kn (i.e. Kn is an amalgamation of H) if and only
if:

1. The vertices of H can be partitioned into sets V1, . . . , Vn
with degree sum n − 1;

2. the edges incident with rare degree vertices do not form
any loops or multiple edges between the sets.



Detachments and Exact Colourings
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Detachments and Exact Colourings

Exact colouring with 5 colours



Detachments and Exact Colourings

Exact colouring
An exact colouring of a graph is a proper vertex colouring such
that every pair of colours appears on exactly one edge.

A graph H has an exact colouring with n colours if and only if H
is a detachment of Kn.



Detachments of complete graphs

Theorem
Let d be a integer. Let H be a triangle-free graph of maximum
degree d , with

(n
2

)
edges. Then (for large enough n) H is a
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if:
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Sketch of proof

Need to show that H can be amalgamated to form a complete
graph, or, equivalently, that H has an exact colouring.

The amalgamation and exact colouring viewpoints are both
useful because

I a partial amalgamation allows us to construct useful highly
structured subgraphs;

I a partial colouring allows us to partially specify the required
amalgamation/colouring without changing the graph.

In fact we will find an exact colouring of an amalgamation of H.



Sketch of proof

Six main steps:
1. Do some amalgamations to make the graph (almost)

regular.
2. Do some more amalgamations to construct useful

subgraphs (superleaves/special areas).
3. Colour the vertices where these subgraphs meet rest of

graph.
4. Use a partly random technique to colour most of the graph.
5. Use special areas to sort out some problems.
6. Use the (highly structured) superleaves to finish the

colouring.



Sketch of proof - Step 1 - Regularising

Do some amalgamations to make the graph (almost) regular.
Resulting graph has:

I n vertices of degree r ′.
I All the rest of degree r .

We can do this provided the Necessary Conditions 2 are met.



Sketch of proof - Step 2 - Superleaves

First suppose that the graph had lots of leaves.



Sketch of proof - Step 2 - Superleaves

Suppose we can colour the rest of the graph, using almost all
colour pairs.



Sketch of proof - Step 2 - Superleaves

We can form a graph from the colour pairs not yet used

Unused colour pairs



Sketch of proof - Step 2 - Superleaves

To colour the leaves correctly, we need to orient the edges so
that the outdegree of each colour equals the number of leaves
attached to that colour.

Unused colour pairs



Sketch of proof - Step 2 - Superleaves

For each colour, transfer its out-neighbours’ colours to the
leaves.

Unused colour pairs



Sketch of proof - Step 2 - Superleaves

This is easy to do as long as the degrees do not differ too
much.

Unused colour pairs



Sketch of proof - Step 2 - Superleaves

Unfortunately we don’t actually have any leaves.



Sketch of proof - Step 2 - Superleaves

But we can make something similar. Identify (amalgamate) the
vertices with same number.
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Sketch of proof - Step 2 - Superleaves

This gives an complete bipartite graph attached to the graph by
one part.
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Sketch of proof - Step 2 - Superleaves

This gives an complete bipartite graph attached to the graph by
one part.



Sketch of proof - Step 2 - Superleaves

We think of each part as a supervertex . . .

. . . coloured by (shades of) a supercolour.



Sketch of proof - Step 2 - Superleaves

We think of each part as a supervertex . . .
. . . coloured by (shades of) a supercolour.



Sketch of proof - Step 2 - Superleaves

First construct the superleaves.



Sketch of proof - Step 2 - Superleaves

Also construct some “special” areas.



Sketch of proof - Step 3

Colour (with supercolours) the interfaces where the superleaves
meet rest of graph. Also the boundary of the special areas.



Sketch of proof - Step 4

Colour the main part of graph using semi-random technique, and
new colours.



Sketch of proof - Step 5

Colour the special areas, using up “difficult” colour pairs.



Sketch of proof - Step 6

Finally colour the superleaves as described earlier.

Unused colour pairs



What about directed graphs?

DIRECTED DETACHMENT OF COMPLETE GRAPH

Instance Directed graph H with maximum
(in-,out-)degree d .

Question Is H a detachment of a complete graph?

NP-complete for d ≥ 2.



Bin Packing

B

Bin Packing: K BINS, each of capacity B

Set U of objects, with size s(u) for each u ∈ U

Can assume B, s(u) are even.



Directed detachments of complete graph
Bin packing:
K bins of size B, set U of objects, size s(u) for each u ∈ U.
Detachment:
G = KKB (complete directed graph); H has three parts:

1. K directed cycles of length B.
2. Component Hu for each u ∈ U.
3. One undirected cycle; length so that |E(H)| = |E(G)|.
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Directed detachments of complete graph

H can be amalgamated to give KKB ⇔ Bin Packing has a solu-
tion.
Look at degrees (indegree, outdegree) of H.

1. K directed cycles of length B.
2. Component Hu for each u ∈ U.
3. One undirected cycle; length so that |E(H)| = |E(G)|.



Directed detachments of complete graph

H can be amalgamated to give KKB ⇔ Bin Packing has a solu-
tion.
Look at degrees (indegree, outdegree) of H.

1. K directed cycles of length B.
2. Component Hu for each u ∈ U.
3. One undirected cycle; length so that |E(H)| = |E(G)|.

(1, 1)

(1, 1)

(1, 1)
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Directed detachments of complete graph
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Directed detachments of complete graph

Can we amalgamate H to give KKB?
1. Vertex of degree (1, 2) must be paired with vertex of

degree (1, 0), so components Hu are linked together into
directed “chains”, with all degrees equal to (2, 2).

2. Degrees of KKB are odd. H has only KB vertices of degree
(1, 1) (in the directed cycles), so these must not be
amalgamated with each other.

3. So KB directed edges in cycles must be paired with the KB
directed edges in the chains.
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degree (1, 0), so components Hu are linked together into
directed “chains”, with all degrees equal to (2, 2).
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Directed detachments of complete graph

Can we amalgamate H to give KKB?
1. Each chain must have length B.
2. Conclusion: The components Hu must be linked to form K

“cycles” of length B, so Bin Packing has a solution.
3. Converse is easy.



Directed detachments of complete graph

1. So general case with G complete, H bounded degree is
NP-complete (not known in undirected case).

2. But this seems to rely on having just a few genuinely
directed edges.

3. Cases with many directed edges can probably be solved in
a similar way to the undirected case.

4. Natural extension of necessary conditions involves packing
(indegree, outdegree) pairs.



Open Problems

Consider a complete graph Ktd+1 for some t (d is fixed).

Detach each vertex (with degree td) into t vertices of degree d .
We obtain a d-regular graph H on t(td + 1) vertices.

I Can every such H be obtained in this way? No.
I If t is large enough? Open.
I If H is also triangle-free? Yes.
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Open Problems

Consider a complete graph Ktd+1 for some t (d is fixed).
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Open Problems

I More generally, can we remove the “triangle-free” condition
and obtain necessary and sufficient conditions for the
undirected case with G complete and H bounded degree.

Or is this case NP-complete?
I Directed versions of these.
I Given a directed graph H (with degree bound), is H a

detachment of any undirected graph?

What is the complexity of this?


