A comparative study of defining sets in designs

Nicholas Cavenagh
University of Waikato

A defining set for a design is a subset of the design which determines it uniquely.

A Latin square of order n is an $n \times n$ array with each symbol from a set of size n once per row and once per column.

Example 1. The following partially filled-in Latin square has precisely one completion to a Latin square of order 6.

0	1	2	3		
1	2				
2					
					3
				3	4

0	1	2	3	4	5
1	2	3	4	5	0
2	3	4	5	0	1
3	4	5	0	1	2
4	5	0	1	2	3
5	0	1	2	3	4

A defining set for a design is a subset of the design which determines it uniquely.

A Latin square of order n is an $n \times n$ array with each symbol from a set of size n once per row and once per column.

Example 1. The following partially filled-in Latin square has precisely one completion to a Latin square of order 6.

0	1	2	3		
1	2				
2					
					3
				3	4

0	1	2	3	4	5
1	2	3	4	5	0
2	3	4	5	0	1
3	4	5	0	1	2
4	5	0	1	2	3
5	0	1	2	3	4

Example 2. The following is a defining set for a (0,1)-matrix with constant row and column 3.

0	0	0	1		
0	0				
0					
					1
				1	1

\rightarrow| 0 | 0 | 0 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 1 | 1 | 0 |
| 0 | 1 | 1 | 1 | 1 | 0 |
| 1 | 1 | 1 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 0 | 1 | 1 |

Example 2. The following is a defining set for a (0,1)-matrix with constant row and column 3.

0	0	0	1		
0	0				
0					
					1
				1	1

\rightarrow| 0 | 0 | 0 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 1 | 1 | 0 |
| 0 | 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 0 | 1 | 1 |

A frequency square $F\left(n ; \lambda_{1}, \lambda_{2}, \ldots, \lambda_{\alpha}\right)$ is an $n \times n$ array with symbol i occuring λ_{i} times in each row and column.

Example 3. The following is a defining set for $F(6 ; 2,2,2)$. (Fitina, Seberry, Sarvate, 1999)

0	1	1	2		
1	1				
1					
					2
				2	2

\rightarrow| 0 | 1 | 1 | 2 | 2 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 2 | 2 | 0 | 0 |
| 1 | 2 | 2 | 0 | 0 | 1 |
| 2 | 2 | 0 | 0 | 1 | 1 |
| 2 | 0 | 0 | 1 | 1 | 2 |
| 0 | 0 | 1 | 1 | 2 | 2 |

A frequency square $F\left(n ; \lambda_{1}, \lambda_{2}, \ldots, \lambda_{\alpha}\right)$ is an $n \times n$ array with symbol i occuring λ_{i} times in each row and column.

Example 3. The following is a defining set for $F(6 ; 2,2,2)$. (Fitina, Seberry, Sarvate, 1999)

0	1	1	2		
1	1				
1					
					2
				2	2

\rightarrow| 0 | 1 | 1 | 2 | 2 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 2 | 2 | 0 | 0 |
| 1 | 2 | 2 | 0 | 0 | 1 |
| 2 | 2 | 0 | 0 | 1 | 1 |
| 2 | 0 | 0 | 1 | 1 | 2 |
| 0 | 0 | 1 | 1 | 2 | 2 |

A critical set for a design is a minimal defining set. That is, a defining set is a critical set if the removal of any element results in more than one completion. Each of the above defining sets are also critical sets.

Trades.

A trade in a design D is a subset $T \subseteq D$ for which there exists a disjoint mate T^{\prime} such that $T^{\prime} \cap T=\emptyset$ and $(D \backslash T) \cup T^{\prime}$ is a design with the same paramaters (or type) as D. Together (T, T^{\prime}) is called a bitrade.

If the design is some kind of array, T and T^{\prime} occupy the same set of cells and each row and column contains the same set of entries, but in a different order.

Observations:

1. $D \subset L$ is a defining set for a design L if and only if for every trade $T \subseteq L, D \cap T \neq \emptyset$;
2. D is a critical set for a design L if and only if it is:
(a) a defining set for L and
(b) for each element $e \in D$ there is a trade $T \subset L$ such that $T \cap D=\{e\}$.

Given a design D, we define $s d s(D)$ to be the size of the smallest defining set in D and

$$
\mu(=\mu(D))=\frac{s d s(D)}{|D|}
$$

For each of the above designs, $\mu=1 / 4$.

The following Latin squares have $\mu=5 / 16, \mu=6 / 25$ and $\mu=7 / 25$ (Adams, Khodkar, 2001), respectively.

0	1	2	3
1	0	3	2
2	3	0	1
3	2	1	0

0	1	2	3	4
1	2	3	4	0
2	3	4	0	1
3	4	0	1	2
4	0	1	2	3

0	1	2	3	4
1	0	3	4	2
2	3	4	0	1
3	4	1	2	0
4	2	0	1	3

	1	2	3
1	0		2
2	3	0	
3		1	0

	3	1	2
2	1		0
3	0	2	
1		0	3

The following Latin squares have $\mu=5 / 16, \mu=6 / 25$ and $\mu=7 / 25$ (Adams, Khodkar, 2001), respectively.

0	1	2	3
1	0	3	2
2	3	0	1
3	2	1	0

0	1	2	3	4
1	2	3	4	0
2	3	4	0	1
3	4	0	1	2
4	0	1	2	3

0	1	2	3	4
1	0	3	4	2
2	3	4	0	1
3	4	1	2	0
4	2	0	1	3

	1	2	3
1	0		2
2	3	0	
3		1	0

	3	1	2
2	1		0
3	0	2	
1		0	3

For a design D of some order n and "type" T (e.g. $T \in\{$ "Latin square"," frequency square" $\}$),
$\mu(T, n):=\min \{\mu(D) \mid D$ is a design of type T and order $n\}$.

We also define the surety of type T to be the following limit (if it exists):

$$
\lim _{n \rightarrow \infty} \mu(T, n)
$$

Surety is a potentially interesting measure because:

- Surety is an indication of both the storability and the security of a design.
- Algebraic objects typically have surety 0 .
- Purely combinatorial objects typically have surety 1.
- Designs are "interesting" as they often have non-trivial surety (strictly between 0 and 1).

Surety (or an equivalent concept) has been considered for various designs:

- member defining sets for Steiner designs (Gray and Ramsay, 1999),
- projective planes (Gray, Hamilton, O'Keefe (1997)),
- Hadamard designs (Seberry (1992), Sarvate and Seberry (1994)).

Let $T(F)$ be the type $n \times n$ frequency square, with no symbol occuring more than $n / 2$ times in each row/column.

The Conjecture.

$$
\mu(T(F), n)= \begin{cases}1 / 4 & \text { if } n \text { is even; } \\ \left\lfloor n^{2} / 4\right\rfloor / n^{2} & \text { if } n \text { is odd }\end{cases}
$$

If The Conjecture is true, the surety of type $T(F)$ is equal to $1 / 4$.

Let $\operatorname{scs}(n)$ be the size of the smallest critical set in any Latin square of order n.

Sub-conjecture. For each integer $n \geq 1, \operatorname{scs}(n)=\left\lfloor n^{2} / 4\right\rfloor$.

This conjecture is true for

- $n \leq 5$: Curran and van Rees (1978)
- $n=6,7:$ Adams and Kohdkar (2001)
- $n=8:$ Bean (2005)

Best known upper and lower bounds for general n :

For each $n \geq 1, \operatorname{scs}(n) \leq\left\lfloor n^{2} / 4\right\rfloor$. (Cooper, Donovan, Seberry $(1991,1996)$).

On the other hand, for all $n \geq 1, \operatorname{scs}(n) \geq n\left\lfloor(\log n)^{1 / 3} / 2\right\rfloor$ (Cavenagh, 2007).

Next consider a $2 m \times 2 m(0,1)$-matrix with constant row and column sum m. (Equivalently, a frequency square $F(2 m ; m, m)$.)

Theorem. (Fitina, Seberry, Sarvate, 1999)

$$
\mu(F(2 m ; m, m)) \leq 1 / 4
$$

Theorem. (Cavenagh, 2011)

$$
\mu(F(2 m ; m, m))=1 / 4
$$

Hence the surety of frequency squares of the form $F(2 m ; m, m)$ is $1 / 4$.

Why is The Conjecture tractible for (0,1)-matrices, yet unverified for Latin squares?

Trades in (0,1)-matrices.
Here we consider a (0,1)-matrix with fixed row and column sums. Since only two symbols are allowed, a trade T in a (0,1)-matrix has a unique disjoint mate T^{\prime}.

0	1	1	0	
1	0		0	1
1		0		
	0		1	
0	1		1	0
T				

1	0	0	1	
0	1		1	0
0		1		
	1		0	
1	0		0	1
T^{\prime}				

Moreover, each row and column must have the same number of 0 's and 1's.

Trades in Latin squares.

A trade in a Latin square may have more than one disjoint mate:

0	1	2	3	
4	5		2	3
2		0		
	3		1	
3	2		5	4
T				

3	2	0	1	
2	3		5	4
0		2		
	1		3	
4	5		2	3
T^{\prime}				

2	3	0	1	
3	2		5	4
0		2		
	1		3	
4	5		2	3
T^{\prime}				

Lemma.

Let M be a partially filled-in (0,1)-matrix such that each row and column of M has at least one 0 and at least one 1. Then M contains a trade.

Theorem. Any trade in a $(0,1)$-matrix can be partitioned into disjoint minimal trades (which are alternating $0-1$ cycles):

0	1	1	0		
1	0		$\mathbf{0}$	$\mathbf{1}$	
1		0			
	0		1		
0	$\mathbf{1}$		$\mathbf{1}$	$\mathbf{0}$	
T					

1	0	0	1	
0	1		$\mathbf{1}$	$\mathbf{0}$
0		1		
	1		0	
1	0		$\mathbf{0}$	$\mathbf{1}$
T^{\prime}				

Lemma. Suppose D is a defining set for a (0,1)-matrix M and $D \subset M$. Then $M \backslash D$ must have either a row or column containing only 0 's or only 1's.

Consequence: Completing defining sets for (0,1)-matrices is easy (can be done in polynomial time), a rather boring Sudoku puzzle!!!

Theorem. (Colbourn, 1984) Deciding whether a partial Latin square is completable is NP-complete, even if there are no more than 3 unfilled cells in each row and column.

In the following critical set, no missing entry is directly "forced":

				4
	0	3		
2				
3		1		
			1	

Theorem. Let D be a critical set for a (0,1)-matrix M. Then D contains no trades. On the surface this theorem is non-intuitive!!!

Corollary. The complement of a critical set in a (0,1)-matrix is always a defining set.

Th following is a critical set for a Latin square of order 4. It contains a trade; thus its complement is not a defining set.

0	1	2	3
1	0		
2		0	
3			

Theorem. Any defining set for a $2 m \times 2 m(0,1)$-matrix with constant row and columns sum m has size at least m^{2}.

Proof by coin-flipping.

Corollary. Any critical set for a $2 m \times 2 m(0,1)$-matrix with constant row and columns sum m has size at most $3 m^{2}$.

Open problem: Do there exist critical sets which meet this bound? Not for small orders...
... but we can come close for large orders.
Lemma. For each $m \geq 2$, there exists a critical set in $F(2 m ; m, m)$ of size $3 m^{2}-8 m+8$.

For $m=5$:

0	0	0	1	1	1		0	0	
0	0	0	1	1	1			0	
0	0	0	1	1	1			0	
1	1	1				1			
1	1	1				1			
1	1	1				1			
			1	1	1				
0	0	0						0	0
								0	0

We can exactly describe the structure of critical sets in $F(2 m ; m, m)$ of minimal size.

Theorem. (Gale-Ryser, Walkup, Brualdi) A rectangular array on symbols 0 and 1 has no trades if and only if the rows and columns can be arranged so that a line with nonnegative gradient can be drawn with only 1's below the line and only 0 's above the line.

$$
\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

Theorem. Let D be a defining set for a matrix $M \in F(2 m ; m, m)$ with size m^{2}. Then M may be split into four quadrants:

$$
M=\left[\begin{array}{l|l}
E & F \\
\hline G & H
\end{array}\right]
$$

such that each quadrant has no trades, $E=H, F=G$. Moreover D contains every 0 from quadrant E and every 1 from quadrant H and no other symbols.

Example. A defining set in $F(8 ; 4,4)$:

0	0	0	0	1	1	1	1
0	0	1	1	1	1	0	0
0	1	1	1	1	0	0	0
1	1	1	1	0	0	0	0
1	1	1	1	0	0	0	0
1	1	0	0	0	0	1	1
1	0	0	0	0	1	1	1
0	0	0	0	1	1	1	1

So we know all about the size of minimum defining sets for (0,1)-matrices (in this special case)... but not yet for Latin squares.

Next steps:

- Look at frequency squares with at most 3 distinct symbols.
- Are there other designs with surety equal to $1 / 4$???

Summary

- The surety for Latin squares and certain (0,1)-matrices with constant row and column sum appears to be the same (i.e. 1/4).
- This is perhaps because they can both belong to a broader class of frequency squares with constant surety.
- Current methods only handle special cases of "The Conjecture".
- Surety is a tool for comparing the structure of designs, and may unearth new connections between different types of designs.

The idea of surety can be generalized. We can also consider:

- The size of the largest critical set in any design of a given type and order.
- The design of a given type and order which has the largest smallest critical set size (inf). For Latin squares,

$$
n^{2}-(e+o(1)) n^{5 / 3} \leq \inf \leq n^{2}-O\left(n^{3 / 2}\right)
$$

(Ghandehari, Hatami, Mahmoodian, 2005)

- The design of a given type and order which has the smallest largest critical set size (sup).

