
Combinatorial properties of transformation
monoids

Peter J. Cameron

35ACCMCC
Melbourne, December 2011



A few combinatorial problems . . .

I Is there an analogue of Baranyai’s Theorem over fields
with more than one element? That is, if k divides n, can
one partition the set of all k-dimensional subspaces of an
n-dimensional vector space into spreads, each spread
containing every non-zero vector once?

I Which polar spaces have ovoids, spreads, or partitions into
ovoids?

I For which n can we partition the k-element subsets of an
n-set into Steiner systems S(3, 4, n), or into Steiner systems
S(2, 4, n)?
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. . . which all have something in common

I will define two properties of permutation groups,
synchronization and separation. It turns out that “separating”
implies “synchronizing”, which implies “primitive” (and even
“basic”, in terms of the O’Nan–Scott classification).

But deciding which basic primitive groups are synchronizing,
or separating, involves almost no group theory, and turns into a
combinatorial problem, usually an interesting (and hard)
problem. So this machine gives us a big supply of interesting
combinatorial problems.
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Automata

“Automaton” here means “finite deterministic automaton”.

An automaton is a device which can be in any one of a set Ω of
internal states. On the console there are a number of coloured
buttons; pressing a button forces the automaton to undergo a
transition, a function from Ω to itself.
Thus we can regard an automaton as an edge-coloured directed
graph on Ω, with the property that there is a unique edge of
each colour leaving each vertex.
An automaton is synchronizing if there is a sequence of
transitions which brings it into a fixed state α ∈ Ω, from any
initial state.
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The dungeon
You are in a dungeon consisting of a number of rooms.
Passages are marked with coloured arrows. Each room
contains a special door; in one room, the door leads to freedom,
but in all the others, to instant death. You have a schematic
map of the dungeon, but you do not know where you are.
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You can check that (Blue, Red, Blue, Blue) takes you to room 3
no matter where you start.
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Algebraic formulation

Multiple button presses correspond to composition of
transitions. The set of all functions generated by the given set S
of transitions is closed under composition and contains the
identity; thus it is a transformation monoid, the monoid
generated by S.

Note that any permutation in the monoid generated by S
actually lies in the group generated by the permutations in S,
since a product including a non-permutation cannot be a
permutation.
An automaton is synchronizing if and only if this monoid
contains a constant function (an element of rank 1). A word in
the generators (that is, a series of button presses which
evaluates to a constant function) is called a reset word.
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The Černý conjecture

The study of synchronizing automata has been driven by the
Černý conjecture, made in the 1960s and still open:

If an n-state automaton is synchronizing, then it has a reset
word of length at most (n− 1)2.

If true, this would be best possible, as the following example
shows.
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B R R R B R R R B
1 2 3 4 1 2 3 4 1 2
2 2 3 4 1 2 3 4 1 2
3 3 4 1 2 2 3 4 1 2
4 4 1 2 3 3 4 1 2 2

So BRRRBRRRB is a reset word of length 9 = (4− 1)2. It can be
checked that this is the shortest reset word.
Replacing the square with a regular n-gon gives examples meeting
the bound for all n.
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Semigroups and groups

An approach to the Černý conjecture was introduced by João
Araújo and Ben Steinberg.

We know that the permutations in a transformation monoid
form a permutation group generated by the members of the
generating set which are permutations. They made the
following definition:
Let G be a permutation group on Ω. We say that G is
synchronizing if, whenever f : Ω→ Ω is not a permutation, the
monoid 〈G, f 〉 generated by G and f contains an element of
rank 1 (i.e. is synchronizing in the earlier sense).
The hope was that, if G is synchronizing, we can use its
structure to bound the length of the reset word in 〈G, f 〉.
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Synchronizing groups

The preceding synchronizing monoid has two generators, one a
permutation which generates the cyclic group of order 4.

But C4 is not a synchronizing group. If its generator is
g = (1, 2, 3, 4), and if f maps 1 7→ 1, 2 7→ 2, 3 7→ 1 and 4 7→ 2,
then it is easy to see that any word containing at least one
occurrence of f has an edge of the 4-cycle as its image.
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Synchronizing implies primitive

A permutation group G on Ω is primitive if it preserves no
equivalence relation on G except for the two trivial ones
(equality and the “universal” relation.

Now a synchronizing group is primitive. For suppose that G is
imprimitive. Choose a transversal T for the non-trivial
G-invariant equivalence relation, and let f map each point to its
representative in T. Then any word involving f and elements of
G evaluates to a function whose image is a transversal to the
equivalence relation.
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Another characterisation of synchronization

João Araújo showed:

A permutation group G on Ω is non-synchronizing if and
only if there exists a non-trivial partition π of Ω and a
subset T of Ω such that every image of T under G is a
transversal of π. It is synchronizing if no such pair exists.

The proof is almost identical to the argument just given.
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Synchronizing implies basic

The celebrated O’Nan–Scott Theorem classifies primitive
groups into a number of types. We can exclude one of these
types for synchronizing groups.

A permutation group G on Ω is non-basic if it preserves a
Cartesian power (hypercube) structure on Ω, and is basic
otherwise.
Now a synchronizing group is basic. This is illustrated in the
picture, where T is simultaneously a transversal for the
partitions of Ω into each parallel class of codimension-1 faces.
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Separating groups

This class of groups is not directly inspired by automata theory
but has a close relationship to synchronizing groups.

Let G act transitively on Ω. We say that G is separating if there
do not exist subsets A, B of Ω such that |A|, |B| > 1 and
|Ag∩ B| = 1 for all g ∈ G.
A separating group is synchronizing. For if G is not
synchronizing, let π be a non-trivial partition and T a subset
such that Tg is a transversal to π for all g ∈ G; taking A = T
and B a part of π shows that G is not separating.
It is easy to see (the proof comes later) that a 2-transitive group
is separating. So we have a hierarchy:

2-transitive ⇒ separating⇒ synchronizing
⇒ basic⇒ primitive.
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A characterisation

There are polynomial-time algorithms to test whether a
permutation group is transitive, 2-transitive or primitive.

Such tests are not known for synchronization or separation. But
there are tests which can be applied in practice for groups with
degrees into the thousands. They depend on the following
characterisations, most conveniently stated in negative form.
A graph is non-trivial if it is not complete or null. ω, α and χ
denote the clique number, independence number, and
chromatic number of a graph.
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Theorem

I The permutation group G on Ω is non-synchronizing if and only
if there is a non-trivial G-invariant graph X with
χ(X) = ω(X).

I The transitive permutation group G on Ω is non-separating if
and only if there is a non-trivial G-invariant graph X with
ω(X) · α(X) = |Ω|.

Note that the second condition is the same for a graph and its
complement.
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An algorithm

Thus we have the following algorithm to check whether the
group G is synchronizing or separating:

I Construct all the non-trivial G-invariant graphs (there are
2d − 2 of these, falling into 2d−1 − 1 complementary pairs),
where d is the number of G-orbits on unordered pairs from
Ω.

I For one graph X of each pair, check whether it satisfies
ω(X) · α(X) = |Ω|. If no such graph exists, the group is
separating (and hence synchronizing).

I For each of the graphs found in the previous step, and
their complements, check whether ω(X) = χ(X) (note that
ω(X) is already known). If one is found, then G is not
synchronizing; otherwise it is.
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Efficiency

This looks like a very bad algorithm: we have exponentially
many graphs, and have to calculate their clique numbers and
possibly their chromatic numbers (these are NP-hard).

But it is not as bad as it looks.
I In many important cases, d = 2, so we have only one

graph to consider in step 2, and two in step 3.
I Finding clique number (especially) of highly symmetric

graphs is possible for quite large graphs, using algorithms
that exploit the symmetry. (This is the philosophy of the
GAP share package Grape.)

All primitive groups of degree up to 400, and interesting
groups with degrees in the thousands, have been tested.
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A class of problems

So we need to consider the general problem:

Let X be a graph on n vertices admitting a primitive basic
automorphism group. Decide whether ω(X) = χ(X), and
whether ω(X) · α(X) = n.

It turns out quite often that maximal cliques and cocliques and
minimal colourings of such graphs are of great combinatorial
or geometric interest. I will give a number of examples.
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Sn on pairs

We begin with a simple example, Sn acting on the set of
2-element subsets of {1, . . . , n}. This group is primitive (and
basic) if n ≥ 5.

There are just two orbits on pairs of two-element subsets,
depending on the size of intersection of the two subsets (1 or 0).
The corresponding pair of G-invariant graphs are X = L(Kn),
the line graph of Kn (otherwise known as the triangular graph)
and its complement.
It is easy to see that ω(X) = n− 1, α(X) = bn/2c. The product
of these numbers is (n

2) if and only if n is even. So, if n is odd,
then G is separating, and hence synchronizing.
We have χ(X) = n− 1, so ω(X) = χ(X). But χ(X̄) = n− 2,
which is greater than n/2 for n ≥ 6. So, for even n, G is not
synchronizing.
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Sn on k-sets

The group G = Sn acting on k-element subsets of {1, . . . , n} is
primitive and basic for n ≥ 7. However, its synchronizing
properties are a little more complicated:

Theorem
For n ≥ 7, the group Sn acting on 3-sets is synchronizing, or
separating, if and only if n ≡ 2, 4, 5 (mod 6) and n 6= 8.
I will sketch some of the ideas of the proof as an illustration of
the combinatorics used.
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The group G has three orbits on pairs of 3-sets, depending on
the size (0, 1 or 2) of the intersection. So there are six non-trivial
G-invariant graphs, falling into three complementary pairs. We
denote by X12 the graph in which two triples are joined if they
intersect in 1 or 2 points, and similarly for the others.

Clearly ω(X0) = bn/3c = α(X12). Baranyai’s Theorem asserts
that, if n is a multiple of 3, then the complete 3-hypergraph has
a 1-factorisation; so χ(X12) = (n−1

2 ). Thus G is not
synchronizing if n is divisible by 3. Also, the Erdős–Ko–Rado
theorem asserts that ω(X12) = (n−1

2 ); so for n not divisible by 3,
this pair of graphs does not need to be considered further.



The group G has three orbits on pairs of 3-sets, depending on
the size (0, 1 or 2) of the intersection. So there are six non-trivial
G-invariant graphs, falling into three complementary pairs. We
denote by X12 the graph in which two triples are joined if they
intersect in 1 or 2 points, and similarly for the others.
Clearly ω(X0) = bn/3c = α(X12). Baranyai’s Theorem asserts
that, if n is a multiple of 3, then the complete 3-hypergraph has
a 1-factorisation; so χ(X12) = (n−1

2 ). Thus G is not
synchronizing if n is divisible by 3. Also, the Erdős–Ko–Rado
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Now ω(X2) ≤ n(n− 1)/6, with equality if and only if there
exists a Steiner triple system of order n, that is, n is congruent
to 1 or 3 mod 6. Also α(X2) = n− 2 for n ≥ 7. Teirlinck’s
theorem asserts that, if n is an admissible order of a STS and
n > 7, then the set of all triples can be partitioned into n− 2
Steiner triple systems; so for these values of n, G is not
synchronizing, and for other values except 7, the graphs do not
need to be considered further.

Analysis of the third pair of graphs, with special attention to
the cases n = 7 and n = 8, finishes the proof.
Things get more complicated for k ≥ 4.
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Projective groups on subspaces

Similar things occur here. For the projective groups acting on
lines, we have to consider whether there is a parallelism of
lines: a maximal clique consists of all lines through a point if
the dimension is large enough.

Again, for subspaces of higher dimension, things get more
complicated, and we need projective analogues of the
Erdős–Ko–Rado theorem (conjectured but not yet proved),
Baranyai’s theorem, and Teirlinck’s theorem; in the last case we
are in a desperate situation since we do not even know whether
the projective analogues of Steiner triple systems exist!
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Classical groups
Classical groups form a very important class of primitive basic
groups, acting on the points of the corresponding polar spaces
(that is, the points of projective space which are isotropic with
respect to a bilinear or Hermitian form, or singular with respect
to a quadratic form).

An ovoid is a set of points meeting every maximal subspace of
the polar space in one point, while a spread is a partition of the
points into maximal subspaces.

A quadric with two spreads
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The classical group of a polar space has just two orbits on pairs
of points (points may be perpendicular or not), and we find:

Theorem

I G is non-separating if and only if the polar space possesses an
ovoid.

I G is non-sychronizing if and only if the polar space possesses
either an ovoid and a spread, or a partition into ovoids.
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The determination of which polar spaces have ovoids and
spreads is far from complete, despite several decades of work
by finite geometers. The existence of partitions into ovoids is a
relatively new research problem, which has been resolved only
in a few cases (if it is not trivially ruled out by the nonexistence
of ovoids).

This class gives our first examples of groups which are
synchronizing but not separating. The polar spaces of the
5-dimensional orthogonal groups over finite fields of odd order
have ovoids but no spreads, and Ball et al. have recently shown
that they have no partitions into ovoids.
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Further work

We have worked on some further classes of primitive groups,
but there is a lot still to be done.

It seems likely that any class of primitive basic groups will
throw up combinatorial problems comparable in difficulty, if
not in interest, to those we have already met.
You are warmly invited to join the synchronization project!
More information can be found in lecture notes from my short
course:

http://www.maths.qmul.ac.uk/~pjc/LTCC-2010-intensive3/
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Do two random elements synchronize?

This is motivated by a question of Brendan McKay.

Dixon’s Theorem asserts:

Theorem
The probability that two random permutations of {1, 2, . . . , n}
generate the symmetric or alternating group tends to 1 as n→ ∞.
We have to allow the alternating group since the probability
that two random permutations are both even is 1/4.
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We cannot generate the full transformation monoid Tn with
two elements, since we must include at least two permutations
in any generating set. Moreover, permutations make up an
exponentially small fraction of Tn. So we require many random
elements to generate Tn with high probability.

Instead, I make the following conjecture:

Conjecture

The probability that two random elements of Tn generate a
synchronizing monoid tends to 1 as n→ ∞.
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Here is some data produced by James Mitchell. The first row is
the number n, the second is the number of such pairs of
elements of Tn generating a synchronizing monoid, the third is
the total number n2n of pairs of elements of Tn, and the fourth is
the second divided by the third.

3 4 5 6
549 51520 8063385 1871446896
729 65536 9765625 2176782336

0.7531 0.7861 0.8257 0.8597

These results were obtained using the Citrus and Orb packages
for GAP.



To prove this conjecture, following the proof of Dixon’s
Theorem, there are two steps:

I Describe the maximal non-synchronizing submonoids of
Tn;

I Use Inclusion-Exclusion to count the number of pairs of
elements trapped in one of these submonoids, and show
that it is o(n2n).

The first step has been achieved: the maximal non-sychronizing
monoids have been characterised in terms of graphs, though
there is still a gap between the necessary and sufficient
conditions. Certainly, we do not understand these submonoids
well enough to take the second step.
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Monoids and graphs

There is a connection between transformation monoids and
graphs, with some features of a Galois correspondence. We
define maps in each direction between transformation monoids
on Ω and graphs on the vertex set Ω.

Given a graph X, an endomorphism of X is a function on Ω
which maps edges of X to edges. (We do not care what it does
to non-edges, which may be mapped to non-edges or to edges
or to single vertices). The endomorphisms of X clearly form a
monoid End(X).
In the other direction, given a transformation monoid M, we
define a graph X = Gr(M) by the rule that two vertices v, w are
adjacent if and only if there does not exist f ∈ M such that
vf = wf .
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Theorem
For any transformation monoid M, ω(Gr(M)) = χ(Gr(M)), and
this number is equal to the minimum rank of an element of M.

Hence Gr(M) is complete if and only if M is a permutation
group; and Gr(M) is null if and only if M is synchronizing.
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Combining the maps

Theorem
For any transformation monoid M,

I M ≤ End(Gr(M));
I Gr(End(Gr(M))) = Gr(M).

The graph Gr(End(X)) is called the hull of X. We have
Hull(Hull(X)) = Hull(X). In other words, a graph X is a hull if
and only if it is its own hull (that is, Hull(X) = X).
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Another construction

Let X be a graph on the vertex set Ω with ω(X) = m. Let X′ be
the spanning subgraph of X which consists of those edges of X
which are contained in cliques of size m. Then
End(X) ≤ End(X′).

I will call Y the derived graph of X.
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Maximal non-synchronizing monoids

Theorem
Let M be a maximal non-synchronizing submonoid of Tn. Then there
are graphs X and Y on the vertex set Ω = {1, . . . , n} satisfying the
following conditions:

I End(X) = End(Y) = M;
I ω(X) = ω(Y) = χ(X) = χ(Y);
I X = Hull(Y);
I Y = X′.

I do not know any examples where X and Y are not equal. If
they are equal, then the converse holds:

Theorem
Let X be a hull (other than the null graph), in which every edge is
contained in a clique of size ω(X). Then End(X) is a maximal
non-synchronizing submonoid of T(Ω).
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There are many graphs satisfying the hypotheses of this
theorem. The smallest consists of a single edge; there are
n(n− 1)/2 graphs of this form and each has 2nn−2

endomorphisms. So the probability that a random pair of
endofunctions are both endomorphisms of a graph of this form
is at most

n(n− 1)
2

n2(n−2)

n2n = O(n−2).

This suggests that the probability that two random
endofunctions generate a synchronizing monoid is at least
1−O(1/n2). However, we are still some way from a proof,
since there are many graphs that need to be considered. Of
course, there are big overlaps between their endomorphism
monoids, so careful inclusion-exclusion is required!
For more details see http://arxiv.org/abs/1108.3958
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