Metamorphoses of Graph Designs

Elizabeth Billington

The University of Queensland
Australia

Metamorphoses of Graph Designs

Elizabeth Billington

The University of Queensland
Australia

Outline

- Graph decompositions

Outline

- Graph decompositions
- Metamorphosis of a graph design: what it is

Outline

- Graph decompositions
- Metamorphosis of a graph design: what it is
- Metamorphosis of graph designs: results to date

Outline

- Graph decompositions
- Metamorphosis of a graph design: what it is
- Metamorphosis of graph designs: results to date
- A typical construction (an easy case)

Outline

- Graph decompositions
- Metamorphosis of a graph design: what it is
- Metamorphosis of graph designs: results to date
- A typical construction (an easy case)
- "Complete sets" of metamorphoses from paired graph designs

Outline

- Graph decompositions
- Metamorphosis of a graph design: what it is
- Metamorphosis of graph designs: results to date
- A typical construction (an easy case)
- "Complete sets" of metamorphoses from paired graph designs
- Some open questions

Graph decompositions - and example

Take a graph K (often complete graph K_{n} or complete bipartite graph $K_{m, n}$); partition its edges into copies of a fixed graph G.

Graph decompositions - an example

Take a graph K (often complete graph K_{n} or complete bipartite graph $K_{m, n}$); partition its edges into copies of a fixed graph G.

Example: K_{10} into copies of $K_{4}-e$.

Graph decompositions - an example

Take a graph K (often complete graph K_{n} or complete bipartite graph $K_{m, n}$); partition its edges into copies of a fixed graph G.

Example: K_{10} into copies of $K_{4}-e$.

Graph decompositions - an example

Take a graph K (often complete graph K_{n} or complete bipartite graph $K_{m, n}$); partition its edges into copies of a fixed graph G.
Example: K_{10} into copies of $K_{4}-e$.

Graph decompositions - an example

Take a graph K (often complete graph K_{n} or complete bipartite graph $K_{m, n}$); partition its edges into copies of a fixed graph G.

Example: K_{10} into copies of $K_{4}-e$.

Graph decompositions - an example

Take a graph K (often complete graph K_{n} or complete bipartite graph $K_{m, n}$); partition its edges into copies of a fixed graph G.

Example: K_{10} into copies of $K_{4}-e$.

This is a G-design of order 10 , where $G=K_{4}-e$.

Graph decompositions - an example

Take a graph K (often complete graph K_{n} or complete bipartite graph $K_{m, n}$); partition its edges into copies of a fixed graph G.

Example: K_{10} into copies of $K_{4}-e$.

Graph decompositions - an example

Take a graph K (often complete graph K_{n} or complete bipartite graph $K_{m, n}$); partition its edges into copies of a fixed graph G.

Example: K_{10} into copies of $K_{4}-e$.

Graph decompositions - an example

Take a graph K (often complete graph K_{n} or complete bipartite graph $K_{m, n}$); partition its edges into copies of a fixed graph G.

Example: K_{10} into copies of $K_{4}-e$.

Graph decompositions - an example

Take a graph K (often complete graph K_{n} or complete bipartite graph $K_{m, n}$); partition its edges into copies of a fixed graph G.

Example: K_{10} into copies of $K_{4}-e$.

\int_{2}^{3}

Graph decompositions - an example

Take a graph K (often complete graph K_{n} or complete bipartite graph $K_{m, n}$); partition its edges into copies of a fixed graph G.

Example: K_{10} into copies of $K_{4}-e$.

$\int_{2}^{1} \int_{4}^{3} \quad \int_{6}^{5} \quad \begin{gathered}7 \\ 9\end{gathered}$

Graph decomposition and metamorphosis example

Take a graph K (often complete graph K_{n} or complete bipartite graph $K_{m, n}$); partition its edges into copies of a fixed graph G.

Example: K_{10} into copies of $K_{4}-e$.

Graph decomposition and metamorphosis example

Take a graph K (often complete graph K_{n} or complete bipartite graph $K_{m, n}$); partition its edges into copies of a fixed graph G.

Example: K_{10} into copies of $K_{4}-e$.

This is a metamorphosis from a
 $K_{4}-e$ design of order 10 into a 4-cycle packing of order 10 with leave a 1 -factor.

Graph decomposition and metamorphosis

Such a metamorphosis from some $K_{4}-e$ design of order n into a 4-cycle packing (of order n) exists for all orders 0 or $1(\bmod 5)$, but NOT order 11. Example: K_{10} into copies of $K_{4}-e$. (not 5) (Lindner \& Tripodi, 2005)

Some necessary basics for any graph design
A λ-fold G design of order n is an edge disjoint decomposition of λK_{n} into copies of G.

Some necessary basics for any graph design

A λ-fold G design of order n is an edge disjoint decomposition of λK_{n} into copies of G. (λK_{n} has n vertices and λ edges between every pair of vertices.)

Some necessary basics for any graph design

A λ-fold G design of order n is an edge disjoint decomposition of λK_{n} into copies of G. (λK_{n} has n vertices and λ edges between every pair of vertices.) If $G=K_{k}$, a λ-fold G-design is a $\operatorname{BIBD}(v, k, \lambda)$: an edge-disjoint decomposition of λK_{v} into copies of K_{k}.

Some necessary basics for any graph design

A λ-fold G design of order n is an edge disjoint decomposition of λK_{n} into copies of G. (λK_{n} has n vertices and λ edges between every pair of vertices.) If $G=K_{k}$, a λ-fold G-design is a $\operatorname{BIBD}(v, k, \lambda)$: an edge-disjoint decomposition of λK_{v} into copies of K_{k}.

So λ-fold G-designs are a generalisation of block designs (blocks G instead of k-sets K_{k} as blocks).

Some necessary basics for any graph design

A λ-fold G design of order n is an edge disjoint decomposition of λK_{n} into copies of G. (λK_{n} has n vertices and λ edges between every pair of vertices.)

If $G=K_{k}$, a λ-fold G-design is a $\operatorname{BIBD}(v, k, \lambda)$: an edge-disjoint decomposition of λK_{v} into copies of K_{k}.

So λ-fold G-designs are a generalisation of block designs (blocks G instead of k-sets K_{k} as blocks).

For existence of a λ-fold G design of order n, some necessary conditions are easy to find.

Some necessary basics for any graph design

A λ-fold G design of order n is an edge disjoint decomposition of λK_{n} into copies of G. (λK_{n} has n vertices and λ edges between every pair of vertices.) If $G=K_{k}$, a λ-fold G-design is a $\operatorname{BIBD}(v, k, \lambda)$: an edge-disjoint decomposition of λK_{v} into copies of K_{k}.

So λ-fold G-designs are a generalisation of block designs (blocks G instead of k-sets K_{k} as blocks).

For existence of a λ-fold G design of order n, some necessary conditions are easy to find.

- $n \geqslant|V(G)|$ if $n>1 \quad$ (enough vertices!)

Some necessary basics for any graph design

A λ-fold G design of order n is an edge disjoint decomposition of λK_{n} into copies of G. (λK_{n} has n vertices and λ edges between every pair of vertices.) If $G=K_{k}$, a λ-fold G-design is a $\operatorname{BIBD}(v, k, \lambda)$: an edge-disjoint decomposition of λK_{v} into copies of K_{k}.

So λ-fold G-designs are a generalisation of block designs (blocks G instead of k-sets K_{k} as blocks).

For existence of a λ-fold G design of order n, some necessary conditions are easy to find.

- $n \geqslant|V(G)|$ if $n>1 \quad$ (enough vertices!)
- $\lambda\binom{n}{2}$ must be divisible by $|E(G)|$ (edge count)

Some necessary basics for any graph design

A λ-fold G design of order n is an edge disjoint decomposition of λK_{n} into copies of G. (λK_{n} has n vertices and λ edges between every pair of vertices.) If $G=K_{k}$, a λ-fold G-design is a $\operatorname{BIBD}(v, k, \lambda)$: an edge-disjoint decomposition of λK_{v} into copies of K_{k}.

So λ-fold G-designs are a generalisation of block designs (blocks G instead of k-sets K_{k} as blocks).

For existence of a λ-fold G design of order n, some necessary conditions are easy to find.

- $n \geqslant|V(G)|$ if $n>1 \quad$ (enough vertices!)
- $\lambda\binom{n}{2}$ must be divisible by $|E(G)| \quad$ (edge count)
- $\lambda(n-1)$ must be divisible by gcd of degrees of the vertices in G
G-design to H-design metamorphosis
Start: G design of order n (maybe λ-fold), so have an edge-disjoint decomposition of λK_{n} into copies of a graph G.
G-design to H-design metamorphosis
Start: G design of order n (maybe λ-fold), so have an edge-disjoint decomposition of λK_{n} into copies of a graph G.

Take a subgraph H of G.
G-design to H-design metamorphosis
Start: G design of order n (maybe λ-fold), so have an edge-disjoint decomposition of λK_{n} into copies of a graph G.

Take a subgraph H of G.
Take H from each G-block, and keep this copy of H, from each G-block.

G-design to H-design metamorphosis

Start: G design of order n (maybe λ-fold), so have an edge-disjoint decomposition of λK_{n} into copies of a graph G.

Take a subgraph H of G.
Take H from each G-block, and keep this copy of H, from each G-block. Rearrange (if possible) all the edges from $E(G \backslash H)$ (for all blocks G) into further copies of H.
G-design to H-design metamorphosis
Start: G design of order n (maybe λ-fold),
so have an edge-disjoint decomposition of λK_{n} into copies of a graph G.
Take a subgraph H of G.
Take H from each G-block, and keep this copy of H, from each G-block. Rearrange (if possible) all the edges from $E(G \backslash H$) (for all blocks G) into further copies of H.

Result is a metamorphosis from a G-design into an H-design of the same order.
(Or try to get a maximum packing of an H-design if the order n isn't right for H !)

Some metamorphosis pre-history

1996: Darryn Bryant

There exist pairs of K_{4}-designs of order n
so that removal of a 3-star (a point and its adjacent edges) from each block in both designs (keeping remaining triangles) results in a K_{3}-design (or Steiner Triple System) if and only if $n \equiv 1(\bmod 12)$.

"Partitionable nested Steiner triple systems".

Some metamorphosis pre-history

1996: Darryn Bryant

(order $1(\bmod 12)$)

Some metamorphosis pre-history

1996: Darryn Bryant

(order $1(\bmod 12)$)

Some metamorphosis pre-history

1996: Darryn Bryant

(order $1(\bmod 12)$)

Metamorphoses results: K_{4} design into subgraphs

Metamorphosis from a λ-fold K_{4}-design of order n into a G-design of the same order (or a packing), has been done for all subgraphs of K_{4}, so starting with a $\operatorname{BIBD}(n, 4, \lambda)$:

Metamorphoses results: K_{4} design into subgraphs
Metamorphosis from a λ-fold K_{4}-design of order n into a G-design of the same order (or a packing), has been done for all subgraphs of K_{4}, so starting with a $\operatorname{BIBD}(n, 4, \lambda)$:
4-cycle Lindner \& Street (2000)

3-cycle Lindner \& Rosa (2002)

LINDNER

Street

RosA
(Bryant's 1996 "partitionable nesting" did $\lambda=1$)

Metamorphoses results: K_{4} design into subgraphs
Metamorphosis from a λ-fold K_{4}-design of order n into a G-design of the same order (or a packing), has been done for all subgraphs of K_{4}, so starting with a $\operatorname{BIBD}(n, 4, \lambda)$:
4-cycle Lindner \& Street (2000)

3-cycle Lindner \& Rosa (2002)

LINDNER

Street

RosA
(Bryant's 1996 "partitionable nesting" did $\lambda=1$)
3-cycle + pendant edge
EJB, Dancer, Küçükçifçi \& Lindner (2002) Küçükçifçi, Smith, Yazıcı, λ-fold (2011)

Smith

YAZICI KÜÇÜKÇIFÇI

Metamorphoses results: K_{4} design into subgraphs
Metamorphosis from a λ-fold K_{4}-design of order n into a G-design of the same order (or a packing), has been done for all subgraphs of K_{4}, so starting with a $\operatorname{BIBD}(n, 4, \lambda)$:
4-cycle Lindner \& Street (2000)

3-cycle Lindner \& Rosa (2002)

LINDNER

Street

RosA
(Bryant's 1996 "partitionable nesting" did $\lambda=1$)
3-cycle + pendant edge
EJB, Dancer, Küçükçifçi \& Lindner (2002) Küçükçifçi, Smith, Yazııl, λ-fold (2011)

Smith

YAZICI
$K_{4}-e \quad$ Lindner \& Rosa (2002); Lindner \& Küçükçifçi (λ-fold, 2003) $P_{4} ; P_{3} ; K_{1,3} ;$ two disjoint edges; various.

Metamorphoses results: other G designs

Other G-designs and metamorphoses into subgraphs have been considered.

Metamorphoses results: other G designs

Other G-designs and metamorphoses into subgraphs have been considered.
$K_{4}-e$ designs and metamorphosis into:
4-cycles (and packing) Lindner \& Tripodi (2005)
3-cycle + pendant edge (λ-fold) Chang, Lo Faro \& Tripodi (2007)

TRIPODI

Lo Faro Chang

Metamorphoses results: other G designs

Other G-designs and metamorphoses into subgraphs have been considered.
$K_{4}-e$ designs and metamorphosis into:
4-cycles (and packing) Lindner \& Tripodi (2005)
3-cycle + pendant edge (λ-fold) Chang, Lo Faro \& Tripodi (2007)

TRIPODI

Lo Faro Chang

3-cycle + pendant edge ("kite") λ-fold designs into maximum packings of λ-fold triple systems. Lindner, Lo Faro \& Tripodi (2006)

Metamorphoses results: other G designs

Other G-designs and metamorphoses into subgraphs have been considered.
$K_{4}-e$ designs and metamorphosis into:
4-cycles (and packing) Lindner \& Tripodi (2005)
3-cycle + pendant edge (λ-fold) Chang, Lo Faro \& Tripodi (2007)

TRIPODI

Lo Faro Chang

3-cycle + pendant edge ("kite") λ-fold designs into maximum packings of λ-fold triple systems. Lindner, Lo Faro \& Tripodi (2006) 4-wheel into bowtie (λ-fold) EJB (2000)

Metamorphoses results

"Two generalizations of metamorphosis," Ling \& Quattrocchi (2005)

Metamorphoses results

"Two generalizations of metamorphosis," Ling \& Quattrocchi (2005)

Ling Quattrocchi
(a) take a maximum packing, already considered;

Metamorphoses results

"Two generalizations of metamorphosis," Ling \& Quattrocchi (2005)

Ling
Quattrocchi
(a) take a maximum packing, already considered;
(b) (reminiscent of embeddings)
with H a subgraph of G, a G-design of order n is changed into an H-design of order v with $v \geqslant n$.
So $v-n$ new vertices (as few as possible) are added.

Metamorphoses results

"Two generalizations of metamorphosis," Ling \& Quattrocchi (2005)

Ling
Quattrocchi
(a) take a maximum packing, already considered;
(b) (reminiscent of embeddings)
with H a subgraph of G, a G-design of order n is changed into an H-design of order v with $v \geqslant n$.
So $v-n$ new vertices (as few as possible) are added.
Ling and Quattrocchi use attack (b) for λ-fold K_{4}-designs into λ-fold K_{3}-designs. They add $v-n=0,1$ or 3 new vertices.

Metamorphoses results: other G designs

Other G-designs and metamorphoses:
$K_{3,3}$ designs into 6-cycle systems (λ-fold) EJB \& Quattrocchi (2002)

Metamorphoses results: other G designs

Other G-designs and metamorphoses:
$K_{3,3}$ designs into 6-cycle systems (λ-fold) EJB \& Quattrocchi (2002)
More generally,
Some $K_{n, n}$ designs, into $2 n$-cycle systems (trivial when n even) EJB (2004)

Metamorphoses results: other G designs

Other G-designs and metamorphoses:
$K_{3,3}$ designs into 6-cycle systems (λ-fold) EJB \& Quattrocchi (2002)
More generally,
Some $K_{n, n}$ designs, into $2 n$-cycle systems (trivial when n even) EJB (2004)
$K_{4}+e$ designs into K_{4} designs, any λ
Chang, Lo Faro \& Tripodi (2008)

Metamorphoses results: other G designs

Other G-designs and metamorphoses:
$K_{3,3}$ designs into 6-cycle systems (λ-fold) EJB \& Quattrocchi (2002)
More generally,
Some $K_{n, n}$ designs, into $2 n$-cycle systems (trivial when n even) EJB (2004)
$K_{4}+e$ designs into K_{4} designs, any λ
Chang, Lo Faro \& Tripodi (2008)

Hypergraph metamorphosis, (3-uniform), $K_{4}^{(3)}$ into $K_{4}^{(3)}-e$
Chang, Feng, Lo Faro \& Tripodi (2010)

Metamorphoses results: simultaneous metamorphoses

Adams, EJB, Mahmoodian (2003)
Simultaneous metamorphoses of small k-wheel designs for $k=3,4,6$.

Metamorphoses results: simultaneous metamorphoses

Adams, EJB, Mahmoodian (2003)
Simultaneous metamorphoses of small k-wheel designs for $k=3,4,6$.

Adams

Mahmoodian

Ragusa (2010)
Simultaneous metamorphoses of λ-fold $K_{3}+e$ designs (kite designs) into all possible subgraphs.

RAGUSA

Metamorphoses results: a typical construction

Metamorphoses results: a typical construction

Various constructions used, including: GDDs, skew Room squares / commutative quasigroups, with holes, etc.

Metamorphoses results: a typical construction

Various constructions used, including: GDDs, skew Room squares / commutative quasigroups, with holes, etc. Consider a metamorphosis from a $K_{4}-e$ design of order n into a 4 -cycle system packing. (Recall earlier example, of order 10.)

Metamorphoses results: a typical construction

Various constructions used, including: GDDs, skew Room squares / commutative quasigroups, with holes, etc. Consider a metamorphosis from a $K_{4}-e$ design of order n into a 4-cycle system packing. (Recall earlier example, of order 10.)
Necessary: order n must be 0 or $1(\bmod 5)$.
Also cannot do order 5, nor a metamorphosis of order 11.

Metamorphoses results: a typical construction

Various constructions used, including:
GDDs, skew Room squares / commutative quasigroups, with holes, etc.
Consider a metamorphosis from a $K_{4}-e$ design of order n into a 4-cycle system packing. (Recall earlier example, of order 10.)
Necessary: order n must be 0 or $1(\bmod 5)$.
Also cannot do order 5, nor a metamorphosis of order 11.
Order 6 is easy:

Metamorphoses results: a typical construction

Various constructions used, including:
GDDs, skew Room squares / commutative quasigroups, with holes, etc.
Consider a metamorphosis from a $K_{4}-e$ design of order n into a 4-cycle system packing. (Recall earlier example, of order 10.)
Necessary: order n must be 0 or $1(\bmod 5)$.
Also cannot do order 5, nor a metamorphosis of order 11.
Order 6 is easy:

Metamorphoses results: a typical construction

Various constructions used, including:
GDDs, skew Room squares / commutative quasigroups, with holes, etc.
Consider a metamorphosis from a $K_{4}-e$ design of order n into a 4 -cycle system packing. (Recall earlier example, of order 10.)
Necessary: order n must be 0 or $1(\bmod 5)$.
Also cannot do order 5, nor a metamorphosis of order 11.
Order 6 is easy:

Metamorphoses results: a typical construction

Order 5: no $K_{4}-e$ design:

Metamorphoses results: a typical construction

Order 11: there's a $K_{4}-e$ design (11 blocks), and a 4-cycle packing (13 4-cycles and triangle leave), BUT no metamorphosis!

Metamorphoses results: a typical construction

Order 11: there's a $K_{4}-e$ design (11 blocks), and a 4-cycle packing (13 4-cycles and triangle leave), BUT no metamorphosis!

- Any vertex has degree 10
- $K_{4}-e$ vertices have degrees $3,3,2,2$ Say we have a 4-cycle (x, y, z, w) from removed "diagonal" edges:

Metamorphoses results: a typical construction

Order 11: there's a $K_{4}-e$ design (11 blocks), and a 4-cycle packing (13 4-cycles and triangle leave), BUT no metamorphosis!

- Any vertex has degree 10
- $K_{4}-e$ vertices have degrees $3,3,2,2$ Say we have a 4-cycle (x, y, z, w) from removed "diagonal" edges:

Edge $x z$ cannot be in these four $K_{4}-e$ blocks, (since $\lambda=1$)
so must have another block with edge $x z$, so one of x, z will have total degree $3+3+3=9$, leaving degree 1 , impossible!

Metamorphoses results: a typical construction

Order 11: there's a $K_{4}-e$ design (11 blocks), and a 4-cycle packing (13 4-cycles and triangle leave), BUT no metamorphosis!

- Any vertex has degree 10
- $K_{4}-e$ vertices have degrees $3,3,2,2$

Say we have a 4-cycle (x, y, z, w) from removed "diagonal" edges:

Edge $x z$ cannot be in these four $K_{4}-e$ blocks, (since $\lambda=1$)
so must have another block with edge $x z$, so one of x, z will have total degree $3+3+3=9$, leaving degree 1 , impossible!

So there is no metamorphosis from a $K_{4}-e$ design of order 11 into just $11+1$ 4-cycles, let alone $11+2=13$ 4-cycles and a triangle leave!

Metamorphoses results: a typical construction $\quad \Delta \rightarrow!$ Treat order n in four cases; $n \equiv 0,1,5,6(\bmod 10)$.

Metamorphoses results: a typical construction

Treat order n in four cases; $n \equiv 0,1,5,6(\bmod 10)$.
Do small cases by ad hoc means: orders 6, 10 (11 impossible), 15 , (and 15 with a hole of size 5), 16,16 with hole size 6 , $20,21,21$ with hole size $11,26,31$.

Metamorphoses results: a typical construction
 Treat order n in four cases; $n \equiv 0,1,5,6(\bmod 10)$.
Do small cases by ad hoc means: orders 6, 10 (11 impossible), 15 , (and 15 with a hole of size 5), 16,16 with hole size 6 , $20,21,21$ with hole size $11,26,31$.

The leaves for the metamorphoses into 4 -cycles are well-known and depend on the order mod 8 rather than $\bmod 10$:

Metamorphoses results: a typical construction

Treat order n in four cases; $n \equiv 0,1,5,6(\bmod 10)$.
Do small cases by ad hoc means: orders 6, 10 (11 impossible), 15 , (and 15 with a hole of size 5), 16,16 with hole size 6 , $20,21,21$ with hole size $11,26,31$.

The leaves for the metamorphoses into 4 -cycles are well-known and depend on the order mod 8 rather than $\bmod 10$:
a 1-factor for even order;

Metamorphoses results: a typical construction

Treat order n in four cases; $n \equiv 0,1,5,6(\bmod 10)$.
Do small cases by ad hoc means: orders 6,10 (11 impossible),
15 , (and 15 with a hole of size 5), 16,16 with hole size 6 , 20, 21, 21 with hole size $11,26,31$.

The leaves for the metamorphoses into 4-cycles are well-known and depend on the order mod 8 rather than mod 10 :
a 1-factor for even order;
a 3 -cycle for order $3(\bmod 8)$;
a 5 -cycle for order $7(\bmod 8)$;

Metamorphoses results: a typical construction

Treat order n in four cases; $n \equiv 0,1,5,6(\bmod 10)$.
Do small cases by ad hoc means: orders 6,10 (11 impossible),
15 , (and 15 with a hole of size 5), 16,16 with hole size 6 , $20,21,21$ with hole size $11,26,31$.

The leaves for the metamorphoses into 4 -cycles are well-known and depend on the order mod 8 rather than $\bmod 10$:
a 1 -factor for even order;
a 3 -cycle for order $3(\bmod 8)$;
a 5 -cycle for order $7(\bmod 8)$;

an even degree graph on 6 edges for order $5(\bmod 8)$;

Metamorphoses results: a typical construction

Treat order n in four cases; $n \equiv 0,1,5,6(\bmod 10)$.
Do small cases by ad hoc means: orders 6,10 (11 impossible),
15 , (and 15 with a hole of size 5), 16,16 with hole size 6 , $20,21,21$ with hole size $11,26,31$.
The leaves for the metamorphoses into 4 -cycles are well-known and depend on the order mod 8 rather than $\bmod 10$:
a 1 -factor for even order;
a 3 -cycle for order $3(\bmod 8)$;
a 5 -cycle for order $7(\bmod 8)$;

an even degree graph on 6 edges for order $5(\bmod 8)$;

\emptyset for order $1(\bmod 8)$.

Metamorphoses results: a typical construction

Orders 1 and $5(\bmod 10)$, odd, have "small" leave for the 4 -cycle packing; construction is a bit fiddly!

Metamorphoses results: a typical construction

Orders 1 and $5(\bmod 10)$, odd, have "small" leave for the 4 -cycle packing; construction is a bit fiddly!

Illustration of easy case, order $0(\bmod 10)$, when the 4 -cycle packing has 1 -factor leave.

Metamorphoses results: a typical construction

Illustration of easy case, order $0(\bmod 10)$, when the 4 -cycle packing has 1 -factor leave. Have $10 k$ points

Metamorphoses results: a typical construction

Illustration of easy case, order $0(\bmod 10)$, when the 4 -cycle packing has 1 -factor leave. Have $10 k$ points

Place a $K_{4}-e$ design of order 10 on each blue set of vertices; have metamorphosis into a 4-cycle packing with 1-factor leave.

Metamorphoses results: a typical construction

Illustration of easy case, order $0(\bmod 10)$, when the 4 -cycle packing has 1 -factor leave. Have $10 k$ points

Place a $K_{4}-e$ design of order 10 on each blue set of vertices; have metamorphosis into a 4 -cycle packing with 1 -factor leave. Then take a commutative quasigroup (order $2 k$) with 2×2 holes on diagonal (ok for $k \geqslant 3$).

Metamorphoses results: a typical construction

Illustration of easy case, order $0(\bmod 10)$, when the 4 -cycle packing has 1 -factor leave. Have $10 k$ points

Place a $K_{4}-e$ design of order 10 on each blue set of vertices; have metamorphosis into a 4 -cycle packing with 1 -factor leave. Then take a commutative quasigroup (order $2 k$) with 2×2 holes on diagonal (ok for $k \geqslant 3$). For all x, y in different holes, take red $K_{4}-e$ blocks.

Metamorphoses results: a typical construction

Illustration of easy case, order $0(\bmod 10)$, when the 4 -cycle packing has 1 -factor leave. The metamorphosis:

Remove the edges $x y$ from all the $K_{4}-e$ blocks.

Metamorphoses results: a typical construction

Illustration of easy case, order $0(\bmod 10)$, when the 4 -cycle packing has 1 -factor leave.
The metamorphosis:

Remove the edges $x y$ from all the $K_{4}-e$ blocks.
Since x and y are all possible edges, all levels, with x, y in different holes, these removed edges rearrange into 4-cycles:

Metamorphoses results: a typical construction

Result: Lindner \& Tripodi
There is a metamorphosis from a $K_{4}-e$ design into a 4-cycle maximum packing for all orders $0,1(\bmod 5)$ except for 5 and 11.

Metamorphoses results: a typical construction

Result: Lindner \& Tripodi
There is a metamorphosis from a $K_{4}-e$ design into a 4-cycle maximum packing for all orders $0,1(\bmod 5)$ except for 5 and 11.

The λ-fold cases: Tripodi, 2003.

Complete sets of metamorphoses

Complete sets of metamorphoses

Twofold 4-cycle system into twofold 6-cycle system:

Complete sets of metamorphoses

Twofold 4-cycle system into twofold 6-cycle system:

Paired 4-cycle system

Complete sets of metamorphoses

Twofold 4-cycle system into twofold 6-cycle system:

Remove doubled edges from pairs

Complete sets of metamorphoses

Twofold 4-cycle system into twofold 6-cycle system:

Rearrange double edges into further 6-cycles

Complete sets of metamorphoses

Twofold 4-cycle system into twofold 6-cycle system:

Rearrange double edges into further 6-cycles

Metamorphosis, 2-fold 4-cycle system to 2 -fold 6-cycle system.

Need order $n \equiv 0,1,4$ or $9(\bmod 24)$.

Complete sets of metamorphoses

Twofold 4-cycle system into twofold 6-cycle system:

Metamorphosis, 2-fold 4-cycle system to 2 -fold 6 -cycle system.

Need order $n \equiv 0,1,4$ or $9(\bmod 24)$.

Rearrange double edges into further 6-cycles

Complete sets of metamorphoses

AIM: Take one fixed 2-fold 4 -cycle system of order n. then:

Complete sets of metamorphoses

AIM: Take one fixed 2-fold 4 -cycle system of order n. then:
Take four different pairings of the 4-cycles, for four different metamorphoses into 6-cycles, so that:

Complete sets of metamorphoses

AIM: Take one fixed 2-fold 4 -cycle system of order n. then:
Take four different pairings of the 4-cycles, for four different metamorphoses into 6 -cycles, so that: all the double edges exactly cover $2 K_{n}$.

Complete sets of metamorphoses

AIM: Take one fixed 2-fold 4 -cycle system of order n. then:
Take four different pairings of the 4-cycles, for four different metamorphoses into 6 -cycles, so that: all the double edges exactly cover $2 K_{n}$.

EJB, Cavenagh \& Khodkar (2011+)

Complete sets of metamorphoses

AIM: Take one fixed 2-fold 4 -cycle system of order n. then:
Take four different pairings of the 4-cycles, for four different metamorphoses into 6 -cycles, so that: all the double edges exactly cover $2 K_{n}$.

Metamorphosis A

B

C

D

Complete sets of metamorphoses

Hardest part: small cases. Cannot do order 9.

Complete sets of metamorphoses

Hardest part: small cases. Cannot do order 9 .
There is a metamorphosis, twofold, order 9

Complete sets of metamorphoses

Hardest part: small cases. Cannot do order 9.
There is a metamorphosis, twofold, order 9
But cannot get four such metamorphoses, on the same fixed twofold 4-cycle system of $2 K_{9}$.
Smallest cases, with $n \equiv 0,1,9,16(\bmod 24)$, are $16,24,25$ and 33.

Complete sets of metamorphoses

Hardest part: small cases. Cannot do order 9.
There is a metamorphosis, twofold, order 9
But cannot get four such metamorphoses, on the same fixed twofold 4-cycle system of $2 K_{9}$.
Smallest cases, with $n \equiv 0,1,9,16(\bmod 24)$, are $16,24,25$ and 33.
Order 16: computer search.
Order 25: nice cyclic solution.
Also have orders 24 and 33, ad hoc methods.

Complete sets of metamorphoses

Order 25: $V\left(K_{25}\right)=\mathbb{Z}_{25}$. Six starters for 4-cycle system of $2 K_{25}$:

Use differences $1,2, \ldots 12(\bmod 25)$

Complete sets of metamorphoses

Order 25: $V\left(K_{25}\right)=\mathbb{Z}_{25}$. Six starters for 4 -cycle system of $2 K_{25}$:

Complete sets of metamorphoses

Order 25: $V\left(K_{25}\right)=\mathbb{Z}_{25}$. Six starters for 4-cycle system of $2 K_{25}$:

Complete sets of metamorphoses

Order 25: $V\left(K_{25}\right)=\mathbb{Z}_{25}$. Six starters for 4 -cycle system of $2 K_{25}$:

Complete sets of metamorphoses

Order 25: $V\left(K_{25}\right)=\mathbb{Z}_{25}$. Six starters for 4-cycle system of $2 K_{25}$:

Complete sets of metamorphoses

Order 25: $V\left(K_{25}\right)=\mathbb{Z}_{25}$. Six starters for 4-cycle system of $2 K_{25}$:

Complete sets of metamorphoses

Order 25: $V\left(K_{25}\right)=\mathbb{Z}_{25}$. Six starters for 4-cycle system of $2 K_{25}$:

$$
0 \bullet 1
$$

$$
0 \bullet 3
$$

$$
0 \bullet 6
$$

Complete sets of metamorphoses

Order 25: $V\left(K_{25}\right)=\mathbb{Z}_{25}$. Six starters for 4-cycle system of $2 K_{25}$:

Complete sets of metamorphoses

Order 25: $V\left(K_{25}\right)=\mathbb{Z}_{25}$. Six starters for 4-cycle system of $2 K_{25}$:

Complete sets of metamorphoses

Order 25: $V\left(K_{25}\right)=\mathbb{Z}_{25}$. Six starters for 4-cycle system of $2 K_{25}$:

This is ONE metamorphosis, (A); need 3 more!

Metamorphosis: complete set, order 25

Metamorphosis (A):
$(3,7,0,1),(0,1,19,23) ;(23,9,0,3),(0,3,19,5) ;(21,8,0,6),(0,6,23,10)$; doubled edges form one 6 -cycle $(0,1,4,10,7,6)($ all mod 25$)$.

Metamorphosis: complete set, order 25

Metamorphosis (A):
$(3,7,0,1),(0,1,19,23) ;(23,9,0,3),(0,3,19,5) ;(21,8,0,6),(0,6,23,10)$; doubled edges form one 6 -cycle $(0,1,4,10,7,6)($ all mod 25$)$.
Metamorphosis (B):
$(6,24,0,2),(0,2,3,21) ;(2,11,0,5),(0,5,19,3) ;(21,6,0,8),(0,8,2,12)$; doubled edges form one 6 -cycle ($0,2,7,15,10,8$) (all mod 25).

Metamorphosis: complete set, order 25

Metamorphosis (A):
$(3,7,0,1),(0,1,19,23) ;(23,9,0,3),(0,3,19,5) ;(21,8,0,6),(0,6,23,10)$; doubled edges form one 6 -cycle $(0,1,4,10,7,6)($ all $\bmod 25)$.
Metamorphosis (B):
$(6,24,0,2),(0,2,3,21) ;(2,11,0,5),(0,5,19,3) ;(21,6,0,8),(0,8,2,12)$; doubled edges form one 6 -cycle ($0,2,7,15,10,8$) (all mod 25).
Metamorphosis (C):
$(22,23,0,4),(0,4,6,7) ;(23,3,0,9),(0,9,6,11) ;(4,12,0,10),(0,10,23,6)$; doubled edges form one 6 -cycle $(0,4,13,23,14,10)($ all $\bmod 25)$.

Metamorphosis: complete set, order 25

Metamorphosis (A):
$(3,7,0,1),(0,1,19,23) ;(23,9,0,3),(0,3,19,5) ;(21,8,0,6),(0,6,23,10)$; doubled edges form one 6 -cycle $(0,1,4,10,7,6)($ all $\bmod 25)$.
Metamorphosis (B):
$(6,24,0,2),(0,2,3,21) ;(2,11,0,5),(0,5,19,3) ;(21,6,0,8),(0,8,2,12)$; doubled edges form one 6 -cycle ($0,2,7,15,10,8$) (all mod 25).
Metamorphosis (C):
$(22,23,0,4),(0,4,6,7) ;(23,3,0,9),(0,9,6,11) ;(4,12,0,10),(0,10,23,6)$; doubled edges form one 6 -cycle $(0,4,13,23,14,10)($ all $\bmod 25)$.

Metamorphosis (D): $(3,1,0,7),(0,7,6,4) ;(2,5,0,11),(0,11,6,9) ;(4,10,0,12),(0,12,2,8)$; doubled edges form one 6 -cycle $(0,7,18,5,19,12)($ all mod 25$)$.

Metamorphosis: complete set, order 25

Metamorphosis (A):
$(3,7,0,1),(0,1,19,23) ;(23,9,0,3),(0,3,19,5) ;(21,8,0,6),(0,6,23,10)$; doubled edges form one 6 -cycle $(0,1,4,10,7,6)($ all mod 25$)$.
Metamorphosis (B):
$(6,24,0,2),(0,2,3,21) ;(2,11,0,5),(0,5,19,3) ;(21,6,0,8),(0,8,2,12)$; doubled edges form one 6 -cycle ($0,2,7,15,10,8$) (all mod 25).
Metamorphosis (C):
$(22,23,0,4),(0,4,6,7) ;(23,3,0,9),(0,9,6,11) ;(4,12,0,10),(0,10,23,6)$; doubled edges form one 6 -cycle $(0,4,13,23,14,10)($ all mod 25$)$.
Metamorphosis (D):
$(3,1,0,7),(0,7,6,4) ;(2,5,0,11),(0,11,6,9) ;(4,10,0,12),(0,12,2,8)$; doubled edges form one 6 -cycle $(0,7,18,5,19,12)$ (all mod 25).

Note: the collection of all doubled edges exactly covers $2 K_{25}$; uses differences (A) 1, 3, 6; (B) 2, 5, 8; (C) 4, 9, 10; (D) 7, 11, 12.

Metamorphosis: complete set
$2 K_{n}$ for $n \equiv 0,1,9,16(\bmod 24)$, not order 9 .
Got smallest in each class: $24,25,33,16$.

Metamorphosis: complete set
$2 K_{n}$ for $n \equiv 0,1,9,16(\bmod 24)$, not order 9 .
Got smallest in each class: $24,25,33,16$.
Taste of Construction, easy case $0(\bmod 24)$:
Lay out $n=24 m$ vertices as follows:

Metamorphosis: complete set
$2 K_{n}$ for $n \equiv 0,1,9,16(\bmod 24)$, not order 9 .
Got smallest in each class: $24,25,33,16$.
Taste of Construction, easy case $0(\bmod 24)$:
Lay out $n=24 m$ vertices as follows:

$\bullet \bullet \bullet \bullet$	$\bullet \bullet$	$\bullet \bullet \bullet$	\cdots	$\bullet \bullet \bullet \bullet$	$4 m$
$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	\cdots	$\bullet \bullet \bullet \bullet$	$4 m$
$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	\cdots	$\bullet \bullet \bullet \bullet$	
$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	\cdots	$\bullet \bullet \bullet \bullet$	
$\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	\cdots	$\bullet \bullet \bullet \bullet$		
$\bullet \bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	\cdots	$\bullet \bullet \bullet \bullet$	$4 m$

Metamorphosis: complete set $0(\bmod 24)$
$2 K_{n}$ for $n \equiv 0,1,9,16(\bmod 24)$, not order 9.
Got smallest in each class: $24,25,33,16$.
Taste of Construction, easy case $0(\bmod 24)$:
Lay out $n=24 m$ vertices as follows:

$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$		$\bullet \bullet \bullet$
- - -	- - - -	$\bullet \bullet \bullet \bullet$		- - -
- - -	- - - -	$\bullet \bullet \bullet \bullet$		- - - -
- - -	- - -	- - -		- - - -
- - -	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$		$\bullet \bullet \bullet \bullet$
- - -	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$ -		- - - -
$2 K_{24}$	$2 K_{24}$	$2 K_{24}$		$2 K_{24}$

Metamorphosis: complete set $0(\bmod 24)$
$2 K_{n}$ for $n \equiv 0,1,9,16(\bmod 24)$, not order 9 .
Got smallest in each class: $24,25,33,16$.
Taste of Construction, easy case $0(\bmod 24)$:
Lay out $n=24 m$ vertices as follows:

Metamorphosis: complete set $0(\bmod 24)$
Want a complete set (four pairings of 4-cycles) for $2 K_{6,6}$.

Metamorphosis: complete set $0(\bmod 24)$
Want a complete set (four pairings of 4-cycles) for $2 K_{6,6}$.

0	1	2	
0	0	1	2
1	2	0	1
2	1	2	0

Want a complete set (four pairings of 4-cycles) for $2 K_{6,6}$.

0	1	2	
0	0	1	2
1	2	0	1
2	1	2	0

- $\begin{array}{ll} & 0_{b} \\ \text { - } & 1_{b} \\ \text { - } & 2_{b} \\ \text { - } & 1_{d} \\ & 2_{d} \\ \end{array}$

Want a complete set (four pairings of 4-cycles) for $2 K_{6,6}$.

0	1	2	
0	0	1	2
1	2	0	1
2	1	2	0

Want a complete set (four pairings of 4-cycles) for $2 K_{6,6}$.

0	1	2	
0	0	1	2
1	2	0	1
2	1	2	0

If cell (x, y) in the latin square contains s, we take two 4 -cycles: $\left(x_{a}, y_{b}, x_{c}, s_{d}\right)$ and $\left(x_{a}, y_{b},(x+1)_{c},(s+2)_{d}\right)$, addition $\bmod 3$.
So we have two 4-cycles for each cell in the latin square.

Want a complete set (four pairings of 4-cycles) for $2 K_{6,6}$.

	0	1	2
0	0	1	2
1	2	0	1
2	1	2	0

If cell (x, y) in the latin square contains s, we take two 4-cycles: $\left(x_{a}, y_{b}, x_{c}, s_{d}\right)$ and $\left(x_{a}, y_{b},(x+1)_{c},(s+2)_{d}\right)$, addition $\bmod 3$.
So we have two 4-cycles for each cell in the latin square.
Above two: $\left(1_{a}, 2_{b}, 1_{c}, 1_{d}\right),\left(1_{a}, 2_{b},(1+1)_{c},(1+2)_{d}\right)$.

Want a complete set (four pairings of 4-cycles) for $2 K_{6,6}$.

	0	1	2
0	0	1	2
1	2	0	1
2	1	2	0

If cell (x, y) in the latin square contains s, we take two 4 -cycles: $\left(x_{a}, y_{b}, x_{c}, s_{d}\right)$ and $\left(x_{a}, y_{b},(x+1)_{c},(s+2)_{d}\right)$, addition $\bmod 3$.
So we have two 4-cycles for each cell in the latin square.
Above two: $\left(1_{a}, 2_{b}, 1_{c}, 1_{d}\right), \quad\left(1_{a}, 2_{b},(1+1)_{c},(1+2)_{d}\right)$.
Need four metamorphoses:

Metamorphosis: complete set $0(\bmod 24), K_{6,6}$
Recall: If cell (x, y) in the latin square contains s, we take two 4-cycles: $\left(x_{a}, y_{b}, x_{c}, s_{d}\right)$ and $\left(x_{a}, y_{b},(x+1)_{c},(s+2)_{d}\right)$, addition $\bmod 3$.

Metamorphosis: complete set $0(\bmod 24), K_{6,6}$
Recall: If cell (x, y) in the latin square contains s, we take two 4-cycles: $\left(x_{a}, y_{b}, x_{c}, s_{d}\right)$ and $\left(x_{a}, y_{b},(x+1)_{c},(s+2)_{d}\right)$, addition $\bmod 3$.
Metamorphosis (A): Use the pairs $x_{a} y_{b}$; have all 9 double edges of this type, and there is an easy 6 -cycle decomposition of $2 K_{3,3}$ into three 6 -cycles:

Metamorphosis: complete set $0(\bmod 24), K_{6,6}$
Recall: If cell (x, y) in the latin square contains s, we take two 4-cycles: $\left(x_{a}, y_{b}, x_{c}, s_{d}\right)$ and $\left(x_{a}, y_{b},(x+1)_{c},(s+2)_{d}\right)$, addition $\bmod 3$.
Metamorphosis (A): Use the pairs $x_{a} y_{b}$; have all 9 double edges of this type, and there is an easy 6 -cycle decomposition of $2 K_{3,3}$ into three 6 -cycles:

Metamorphosis: complete set $0(\bmod 24), K_{6,6}$
Recall: If cell (x, y) in the latin square contains s, we take two 4-cycles: $\left(x_{a}, y_{b}, x_{c}, s_{d}\right)$ and $\left(x_{a}, y_{b},(x+1)_{c},(s+2)_{d}\right)$, addition $\bmod 3$.
Metamorphosis (A): Use the pairs $x_{a} y_{b}$; have all 9 double edges of this type, and there is an easy 6 -cycle decomposition of $2 K_{3,3}$ into three 6 -cycles:

Metamorphosis: complete set $0(\bmod 24), K_{6,6}$
Recall: If cell (x, y) in the latin square contains s, we take two 4-cycles: $\left(x_{a}, y_{b}, x_{c}, s_{d}\right)$ and $\left(x_{a}, y_{b},(x+1)_{c},(s+2)_{d}\right)$, addition $\bmod 3$.
Metamorphosis (A): Use the pairs $x_{a} y_{b}$; have all 9 double edges of this type, and there is an easy 6 -cycle decomposition of $2 K_{3,3}$ into three 6 -cycles:

Metamorphosis: complete set $0(\bmod 24), K_{6,6}$
Recall: If cell (x, y) in the latin square contains s, we take two 4-cycles: $\left(x_{a}, y_{b}, x_{c}, s_{d}\right)$ and $\left(x_{a}, y_{b},(x+1)_{c},(s+2)_{d}\right)$, addition $\bmod 3$.
Metamorphosis (A): Use the pairs $x_{a} y_{b}$; have all 9 double edges of this type, and there is an easy 6 -cycle decomposition of $2 K_{3,3}$ into three 6 -cycles.

- 0_{b}
- 1_{b}
- 2_{b}
- 0_{d}
- 1_{d}
- 2_{d}

Metamorphosis: complete set $0(\bmod 24), K_{6,6}$
Recall: If cell (x, y) in the latin square contains s, we take two 4-cycles: $\left(x_{a}, y_{b}, x_{c}, s_{d}\right)$ and $\left(x_{a}, y_{b},(x+1)_{c},(s+2)_{d}\right)$, addition $\bmod 3$.

Metamorphosis (A): Use the pairs $x_{a} y_{b}$; have all 9 double edges of this type, and there is an easy 6 -cycle decomposition of $2 K_{3,3}$ into three 6 -cycles.

Metamorphosis (B):
Use the pairs $x_{a} s_{d}$; have all 9 double edges of this type; use 6 -cycle system of $2 K_{3,3}$.

- 0_{b}
- 1_{b}
- 2_{b}
- 0_{d}
- 1_{d}
- 2_{d}

Metamorphosis: complete set $0(\bmod 24), K_{6,6}$
Recall: If cell (x, y) in the latin square contains s, we take two 4-cycles: $\left(x_{a}, y_{b}, x_{c}, s_{d}\right)$ and $\left(x_{a}, y_{b},(x+1)_{c},(s+2)_{d}\right)$, addition $\bmod 3$.
Metamorphosis (A): Use the pairs $x_{a} y_{b}$; have all 9 double edges of this type, and there is an easy 6 -cycle decomposition of $2 K_{3,3}$ into three 6 -cycles.

Metamorphosis (B):
Use the pairs $x_{a} s_{d}$; have all 9 double edges of this type; use 6-cycle system of $2 K_{3,3}$.
Metamorphosis (C):
Use the pairs $x_{c} y_{b}$; then as above get 6 -cycles.

-0_{b}

- 1_{b}
- 2_{b}
- 0_{d}
- 1_{d}
-2_{d}

Metamorphosis: complete set $0(\bmod 24), K_{6,6}$
Recall: If cell (x, y) in the latin square contains s, we take two 4-cycles: $\left(x_{a}, y_{b}, x_{c}, s_{d}\right)$ and $\left(x_{a}, y_{b},(x+1)_{c},(s+2)_{d}\right)$, addition $\bmod 3$.
Metamorphosis (A): Use the pairs $x_{a} y_{b}$; have all 9 double edges of this type, and there is an easy 6 -cycle decomposition of $2 K_{3,3}$ into three 6 -cycles.

Metamorphosis (B):
Use the pairs $x_{a} s_{d}$; have all 9 double edges of this type; use 6 -cycle system of $2 K_{3,3}$.
Metamorphosis (C):
Use the pairs $x_{c} y_{b}$; then as above get 6 -cycles.

-0_{b}

- 1_{b}
- 2_{b}
- 0_{d}
- 1_{d}
-2_{d}
Metamorphosis (D):
Use the pairs $x_{c} s_{d}$; then as above get 6-cycles.

Metamorphosis: complete set $0(\bmod 24), K_{6,6}$
Recall: If cell (x, y) in the latin square contains s, we take two 4-cycles: $\left(x_{a}, y_{b}, x_{c}, s_{d}\right)$ and $\left(x_{a}, y_{b},(x+1)_{c},(s+2)_{d}\right)$, addition $\bmod 3$.

Metamorphosis (A): Use the pairs $x_{a} y_{b}$; have all 9 double edges of this type, and there is an easy 6 -cycle decomposition of $2 K_{3,3}$ into three 6 -cycles.

Metamorphosis (B):
Use the pairs $x_{a} s_{d}$; have all 9 double edges of this type; use 6 -cycle system of $2 K_{3,3}$.
Metamorphosis (C):
Use the pairs $x_{c} y_{b}$; then as above get 6 -cycles.

Metamorphosis (D):
Use the pairs $x_{c} s_{d}$; then as above get 6-cycles.
So we have a complete set of (four) metamorphoses from this one twofold 4-cycle decomposition of $2 K_{6,6}$.

Metamorphosis: complete set $0(\bmod 24)$

So using complete sets of $2 K_{24}$ and $K_{6,6}$ we have $2 K_{24 m}$:

Metamorphosis: complete set $0,1,9,16(\bmod 24)$
$1(\bmod 24)$ is similar (use $2 K_{25}$ and have an "infinity" point).

Metamorphosis: complete set $0,1,9,16(\bmod 24)$
$1(\bmod 24)$ is similar (use $2 K_{25}$ and have an "infinity" point).

Metamorphosis: complete set $0,1,9,16(\bmod 24)$
$1(\bmod 24)$ is similar (use $2 K_{25}$ and have an "infinity" point). 9 and $16(\bmod 24)$ are slightly more fiddly \ldots

Metamorphosis: complete set $0,1,9,16(\bmod 24)$
$1(\bmod 24)$ is similar (use $2 K_{25}$ and have an "infinity" point).
9 and $16(\bmod 24)$ are slightly more fiddly \ldots

Theorem There exists a twofold 4-cycle decomposition of $2 K_{n}$ with four separate pairings to give metamorphoses into 6 -cycle systems, so that the collection of 6 -cycles formed from the repeated edges in ALL FOUR metamorphoses themselves form a decomposition of $2 K_{n}$, if and only if $n \equiv 0,1,9,16(\bmod 24), n \neq 9$.

Metamorphosis: complete set $0,1,9,16(\bmod 24)$
$1(\bmod 24)$ is similar (use $2 K_{25}$ and have an "infinity" point).
9 and $16(\bmod 24)$ are slightly more fiddly \ldots

Theorem There exists a twofold 4-cycle decomposition of $2 K_{n}$ with four separate pairings to give metamorphoses into 6 -cycle systems, so that the collection of 6 -cycles formed from the repeated edges in ALL FOUR metamorphoses themselves form a decomposition of $2 K_{n}$,
if and only if $n \equiv 0,1,9,16(\bmod 24), n \neq 9$.
In other words ...

Metamorphosis: complete set $0,1,9,16(\bmod 24)$
$1(\bmod 24)$ is similar (use $2 K_{25}$ and have an "infinity" point). 9 and $16(\bmod 24)$ are slightly more fiddly \ldots

Theorem There exists a complete set of metamorphoses of a twofold 4 -cycle system of $2 K_{n}$ into twofold 6 -cycle systems if and only if $n \equiv 0,1,9,16(\bmod 24), n \neq 9$.

Metamorphosis: complete set $0,1,9,16(\bmod 24)$
$1(\bmod 24)$ is similar (use $2 K_{25}$ and have an "infinity" point). 9 and $16(\bmod 24)$ are slightly more fiddly \ldots

Theorem There exists a complete set of metamorphoses of a twofold 4 -cycle system of $2 K_{n}$ into twofold 6 -cycle systems if and only if $n \equiv 0,1,9,16(\bmod 24), n \neq 9$.

Also complete sets found for: twofold paired 3-cycles into 4-cycles (Lindner, Meszka, Rosa);

Metamorphosis: complete set $0,1,9,16(\bmod 24)$
$1(\bmod 24)$ is similar (use $2 K_{25}$ and have an "infinity" point).
9 and $16(\bmod 24)$ are slightly more fiddly \ldots
Theorem There exists a complete set of metamorphoses of a twofold 4 -cycle system of $2 K_{n}$ into twofold 6 -cycle systems if and only if $n \equiv 0,1,9,16(\bmod 24), n \neq 9$.

Also complete sets found for: twofold paired 3-cycles into 4-cycles (Lindner, Meszka, Rosa);

and paired $K_{1,3}$ into 4-cycles (EJB, Khodkar, Lindner).

Some open problems

Some open problems

Some open problems

Some open problems

(A) Find a metamorphosis from a paired 2-fold k-cycle system to a 2-fold ($2 k-2$)-cycle system, of all admissible orders
(orders at least 0 and $1(\bmod k(2 k-2))$).

Some open problems

(A) Find a metamorphosis from a paired 2-fold k-cycle system to a 2-fold ($2 k-2$)-cycle system, of all admissible orders (orders at least 0 and $1(\bmod k(2 k-2))$).
$k=3:$ Gionfriddo \& Lindner, 2003

Gionfriddo
LINDNER

Some open problems

(A) Find a metamorphosis from a paired 2-fold k-cycle system to a 2-fold ($2 k-2$)-cycle system, of all admissible orders (orders at least 0 and $1(\bmod k(2 k-2))$).
$k=3:$ Gionfriddo \& Lindner, 2003

Gionfriddo

YAZICI

Some open problems

(A) Find a metamorphosis from a paired 2-fold k-cycle system to a 2-fold ($2 k-2$)-cycle system, of all admissible orders
(orders at least 0 and $1(\bmod k(2 k-2))$).
$k=3:$ Gionfriddo \& Lindner, 2003

Gionfriddo

YAZICI
$k=4:$ Yazıcı, 2005
What about arbitrary k ?

Some open problems

(A) Find a metamorphosis from a paired 2-fold k-cycle system to a 2 -fold ($2 k-2$)-cycle system, of all admissible orders
(orders at least 0 and $1(\bmod k(2 k-2))$).
(B) Find a complete set of k metamorphoses from one fixed 2-fold k-cycle system of order n, paired in k different ways, into 2 -fold $(2 k-2)$-cycle systems, so that the k sets of removed double edges precisely cover $2 K_{n}$.

Some open problems

$$
+
$$

(A) Find a metamorphosis from a paired 2-fold k-cycle system to a 2-fold ($2 k-2$)-cycle system, of all admissible orders
(orders at least 0 and $1(\bmod k(2 k-2))$).
(B) Find a complete set of k metamorphoses from one fixed 2 -fold k-cycle system of order n, paired in k different ways, into 2 -fold $(2 k-2)$-cycle systems, so that the k sets of removed double edges precisely cover $2 K_{n}$.
$k=3$: Lindner, Meszka \& Rosa

Meszka
RosA

Some open problems

$$
+
$$

(A) Find a metamorphosis from a paired 2-fold k-cycle system to a 2 -fold ($2 k-2$)-cycle system, of all admissible orders
(orders at least 0 and $1(\bmod k(2 k-2))$).
(B) Find a complete set of k metamorphoses from one fixed 2-fold k-cycle system of order n, paired in k different ways, into 2 -fold $(2 k-2)$-cycle systems, so that the k sets of removed double edges precisely cover $2 K_{n}$. $k=3$: Lindner, Meszka \& Rosa $k=4:$ EJB, Cavenagh \& Khodkar

Rosa

Some open problems

$$
+
$$

(A) Find a metamorphosis from a paired 2-fold k-cycle system to a 2-fold ($2 k-2$)-cycle system, of all admissible orders
(orders at least 0 and $1(\bmod k(2 k-2))$).
(B) Find a complete set of k metamorphoses from one fixed 2-fold k-cycle system of order n, paired in k different ways, into 2 -fold $(2 k-2)$-cycle systems, so that the k sets of removed double edges precisely cover $2 K_{n}$.
$k=3$: Lindner, Meszka \& Rosa
$k=4:$ EJB, Cavenagh \& Khodkar
 What about arbitrary k ?

Open Problem: metamorphosis from theta graph design to cycle system $\Theta(a, b, c)$ is a cycle of length $b+c$ with a path of length a joining vertices distance b (or c) apart.

Open Problem: metamorphosis from theta graph design to cycle system
$\Theta(a, b, c)$ is a cycle of length $b+c$ with a path of length a joining vertices distance b (or c) apart.

$\Theta(1,2,2)=K_{4}-e \quad \Theta(1,3,3)$

Open Problem: metamorphosis from theta graph design to cycle system
$\Theta(a, b, c)$ is a cycle of length $b+c$ with a path of length a joining vertices distance b (or c) apart.

$$
\Theta(1,2,2)=K_{4}-e \quad \Theta(1,3,3)
$$

Metamorphosis from $K_{4}-e$ design of order n to a 4-cycle design (or packing) (Lindner \& Tripodi, 2005)

Open Problem: metamorphosis from theta graph design to cycle system
$\Theta(a, b, c)$ is a cycle of length $b+c$ with a path of length a joining vertices distance b (or c) apart.

$$
\Theta(1,2,2)=K_{4}-e \quad \Theta(1,3,3)
$$

Metamorphosis from $K_{4}-e$ design of order n to a 4-cycle design (or packing) (Lindner \& Tripodi, 2005)

Open Problem: metamorphosis from theta graph design to cycle system
$\Theta(a, b, c)$ is a cycle of length $b+c$ with a path of length a joining vertices distance b (or c) apart.

$$
\Theta(1,2,2)=K_{4}-e \quad \Theta(1,3,3)
$$

Some results on existence of theta graphs $\Theta(1, k, k)$ of order n : k odd and $n \equiv 0(\bmod 2 k+1)$, but NOT $\Theta(1,3,3)$ of order 7 ; k odd and $n \equiv 1(\bmod (2 k+1))$, some results.

Blinco, 2001

Open Problem: metamorphosis from theta graph design to cycle system $\Theta(a, b, c)$ is a cycle of length $b+c$ with a path of length a joining vertices distance b (or c) apart.

$$
\Theta(1,2,2)=K_{4}-e \quad \Theta(1,3,3)
$$

Some results on existence of theta graphs $\Theta(1, k, k)$ of order n : k odd and $n \equiv 0(\bmod 2 k+1)$, but NOT $\Theta(1,3,3)$ of order 7 ; k odd and $n \equiv 1(\bmod (2 k+1))$, some results.

Blinco, 2001
(a) Complete the existence work on Θ designs of type $\Theta(1, k, k)$.

Open Problem: metamorphosis from theta graph design to cycle system $\Theta(a, b, c)$ is a cycle of length $b+c$ with a path of length a joining vertices distance b (or c) apart.

$\Theta(1,2,2)=K_{4}-e$

$\Theta(1,3,3)$

 k odd and $n \equiv 0(\bmod 2 k+1)$, but NOT $\Theta(1,3,3)$ of order 7 ; k odd and $n \equiv 1(\bmod (2 k+1))$, some results.

Blinco, 2001
(a) Complete the existence work on Θ designs of type $\Theta(1, k, k)$.
(b) What about a metamorphosis, from a $\Theta(1, k, k)$ design of order n into a $2 k$-cycle design (or packing) of order n ?

Open Problem: resolvable metamorphosis

Example: resolvable K_{4}-design of order 16 (an affine plane of order 4, or a ($16,20,5,4,1$) BIBD); find a metamorphosis into a resolvable maximum packing with 4-cycles.

Open Problem: resolvable metamorphosis

Example: resolvable K_{4}-design of order 16 (an affine plane of order 4, or a ($16,20,5,4,1$) BIBD); find a metamorphosis into a resolvable maximum packing with 4-cycles.

Open Problem: resolvable metamorphosis

Example: resolvable K_{4}-design of order 16 (an affine plane of order 4, or a ($16,20,5,4,1$) BIBD); find a metamorphosis into a resolvable maximum packing with 4-cycles.

Open Problem: resolvable metamorphosis

Example: resolvable K_{4}-design of order 16 (an affine plane of order 4, or a ($16,20,5,4,1$) BIBD); find a metamorphosis into a resolvable maximum packing with 4-cycles.

Open Problem: resolvable metamorphosis

Example: resolvable K_{4}-design of order 16 (an affine plane of order 4, or a ($16,20,5,4,1$) BIBD); find a metamorphosis into a resolvable maximum packing with 4-cycles.

Open Problem: resolvable metamorphosis

Example: resolvable K_{4}-design of order 16 (an affine plane of order 4, or a ($16,20,5,4,1$) BIBD); find a metamorphosis into a resolvable maximum packing with 4-cycles.

Open Problem: resolvable metamorphosis

Example: resolvable K_{4}-design of order 16 (an affine plane of order 4, or a ($16,20,5,4,1$) BIBD); find a metamorphosis into a resolvable maximum packing with 4-cycles.

Open Problem: resolvable metamorphosis

Example: resolvable K_{4}-design of order 16 (an affine plane of order 4, or a ($16,20,5,4,1$) BIBD); find a metamorphosis into a resolvable maximum packing with 4-cycles.

Open Problem: resolvable metamorphosis

Example: resolvable K_{4}-design of order 16 (an affine plane of order 4, or a ($16,20,5,4,1$) BIBD); find a metamorphosis into a resolvable maximum packing with 4-cycles.

Open Problem: resolvable metamorphosis

Example: resolvable K_{4}-design of order 16 (an affine plane of order 4, or a ($16,20,5,4,1$) BIBD); find a metamorphosis into a resolvable maximum packing with 4-cycles.

1-factor leave

Open Problem: resolvable metamorphosis

Example: resolvable K_{4}-design of order 16 (an affine plane of order 4, or a ($16,20,5,4,1$) BIBD); find a metamorphosis into a resolvable maximum packing with 4-cycles.

1-factor leave

Open Problem: resolvable metamorphosis

Example: resolvable K_{4}-design of order 16 (an affine plane of order 4, or a ($16,20,5,4,1$) BIBD); find a metamorphosis into a resolvable maximum packing with 4-cycles.

In general, take a

1-factor leave
resolvable K_{4}-design of order $12 n+4$, and find a metamorphosis into a resolvable maximum packing with 4-cycles (of same order) and leave a 1-factor.

Open Problem: resolvable metamorphosis

Example: resolvable K_{4}-design of order 16 (an affine plane of order 4, or a ($16,20,5,4,1$) BIBD); find a metamorphosis into a resolvable maximum packing with 4-cycles.

In general, take a

1-factor leave
resolvable K_{4}-design of order $12 n+4$, and find a metamorphosis into a resolvable maximum packing with 4-cycles (of same order) and leave a 1-factor.

Resolvable 4-cycle systems, almost resolvable 4-cycle systems, and packings/coverings of these: existence has recently been dealt with. But that's another story!

