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Graph decomposition and metamorphosis

Such a metamorphosis from some K, — e design of order n into a 4-cycle

packing (of order n) exists for all orders 0 or 1 (mod 5), but NOT order 11.
(not5) (Lindner & Tripodi, 2005)

| ™=,

Example: K into copies of K, — €.

I:I 5
2
1 9 - 3
8
- 1
2 9
8 10 .5 4
r
4 7 6 9 5

This is a metamorphosis from a

lo 3¢ S0 79 O ! 9 K4 — e design of order 10 into a
: 4-cycle packing of order 10 with

leave a 1-factor.



Some necessary basics for any graph design

A \-fold G design of order n is an edge disjoint decomposition of AK,
into copies of G.



Some necessary basics for any graph design

A \-fold G design of order n is an edge disjoint decomposition of AK,
into copies of GG. (AK,, has n vertices and \ edges between every pair of vertices.)



Some necessary basics for any graph design

A \-fold G design of order n is an edge disjoint decomposition of AK,
into copies of GG. (AK,, has n vertices and \ edges between every pair of vertices.)

If G = K}, a A-fold G-design is a BIBD (v, k, \): an edge-disjoint decom-
position of \K, into copies of K.



Some necessary basics for any graph design

A \-fold G design of order n is an edge disjoint decomposition of AK,
into copies of GG. (AK,, has n vertices and \ edges between every pair of vertices.)

If G = K}, a A-fold G-design is a BIBD (v, k, \): an edge-disjoint decom-
position of \K, into copies of K.

So A-fold (G-designs are a generalisation of block designs
(blocks G instead of k-sets K as blocks).



Some necessary basics for any graph design

A \-fold G design of order n is an edge disjoint decomposition of AK,
into copies of GG. (AK,, has n vertices and \ edges between every pair of vertices.)

If G = K}, a A-fold G-design is a BIBD (v, k, \): an edge-disjoint decom-
position of \K, into copies of K.

So A-fold (G-designs are a generalisation of block designs
(blocks G instead of k-sets K as blocks).

For existence of a A\-fold G design of order n, some necessary conditions are
easy to find.



Some necessary basics for any graph design

A \-fold G design of order n is an edge disjoint decomposition of AK,
into copies of GG. (AK,, has n vertices and \ edges between every pair of vertices.)

If G = K}, a A-fold G-design is a BIBD (v, k, \): an edge-disjoint decom-
position of \K, into copies of K.

So A-fold (G-designs are a generalisation of block designs
(blocks G instead of k-sets K as blocks).

For existence of a A\-fold G design of order n, some necessary conditions are
easy to find.

en > |V(G)|ifn>1 (enough vertices!)



Some necessary basics for any graph design

A \-fold G design of order n is an edge disjoint decomposition of AK,
into copies of GG. (AK,, has n vertices and \ edges between every pair of vertices.)

If G = K}, a A-fold G-design is a BIBD (v, k, \): an edge-disjoint decom-
position of \K, into copies of K.

So A-fold (G-designs are a generalisation of block designs
(blocks G instead of k-sets K as blocks).

For existence of a A\-fold G design of order n, some necessary conditions are
easy to find.

en > |V(G)|ifn>1 (enough vertices!)
e \(}) must be divisible by |[E(G)| (edge count)



Some necessary basics for any graph design

A \-fold G design of order n is an edge disjoint decomposition of AK,
into copies of GG. (AK,, has n vertices and \ edges between every pair of vertices.)

If G = K}, a A-fold G-design is a BIBD (v, k, \): an edge-disjoint decom-
position of \K, into copies of K.

So A-fold (G-designs are a generalisation of block designs
(blocks G instead of k-sets K as blocks).

For existence of a A\-fold G design of order n, some necessary conditions are
easy to find.

en > |V(G)|ifn>1 (enough vertices!)
e \(}) must be divisible by |[E(G)| (edge count)
e \(n — 1) must be divisible by gcd of degrees of the vertices in G
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(G-design to H-design metamorphosis

Start: GG design of order n (maybe A-fold),
so have an edge-disjoint decomposition of AK, into copies of a graph G.

Take a subgraph H of G.
Take H from each (G-block, and keep this copy of H, from each G-block.

Rearrange (if possible) all the edges from E(G \ H) (for all blocks G) into
further copies of H.

Result is a metamorphosis from a (G-design into an H-design
of the same order.
(Or try to get a maximum packing of an H-design if the order n isn't right for H!)



Some metamorphosis pre-history

1996: Darryn Bryant

There exist pairs of K4-designs of order n

so that removal of a 3-star (a point and

its adjacent edges) from each block in both designs
(keeping remaining triangles) results in a K3-design

(or Steiner Triple System) if and only if n = 1 (mod 12).

“Partitionable nested Steiner triple systems”.
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Some metamorphosis pre-history

1996: Darryn Bryant
(order 1 (mod 12))
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Some metamorphosis pre-history

1996: Darryn Bryant
(order 1 (mod 12))
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Some metamorphosis pre-history

1996: Darryn Bryant
(order 1 (mod 12))
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Metamorphosis from a A-fold /{,-design of order n into a (G-design of the
same order (or a packing), has been done for all subgraphs of K, so starting

with a BIBD (n, 4, \):
4-cycle  Lindner & Street (2000)

A
RosaA

3-cycle Lindner & Rosa (2002)
(Bryant's 1996 “partitionable nesting” did A\ = 1)
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Metamorphoses results: other G designs

Other (G-designs and metamorphoses into subgraphs have been considered.

K, — e designs and metamorphosis into:
4-cycles (and packing) Lindner & Tripodi (2005)

3-cycle + pendant edge (A-fold)  Chang, Lo Faro & Tripodi (2007)

q
L

3-cycle + pendant edge ( “kite”) A-fold designs into
maximum packings of A-fold triple systems. Lindner, Lo Faro & Tripodi (2006)

4-wheel into bowtie (A-fold) EJB (2000) . N
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“Two generalizations of metamorphosis,” Ling & Quattrocchi (2005)
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LiNnG QUATTROCCHI
(a) take a maximum packing, already considered;

(b) (reminiscent of embeddings)

with H a subgraph of G, a G-design of order n

is changed into an H-design of order v with v > n.
So v — n new vertices (as few as possible) are added.

Ling and Quattrocchi use attack (b) for A-fold K ;-designs into
A-fold K'5-designs. They add v — n = 0,1 or 3 new vertices.
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Metamorphoses results: other G designs

Other (G-designs and metamorphoses:

K3 3 designs into 6-cycle systems (A-fold)  EJB & Quattrocchi (2002)

More generally,

Some K, , designs, into 2n-cycle systems (trivial when n even) EJB (2004)

K, + e designs into K4 designs, any A
Chang, Lo Faro & Tripodi (2008)

Lo FARO TRIPODI

(3)

Hypergraph metamorphosis, (3-uniform), Kf)) into K, —e

Chang, Feng, Lo Faro & Tripodi (2010)
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Adams, EJB, Mahmoodian (2003)
Simultaneous metamorphoses of small k-wheel designs for &k = 3,4, 6.
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Metamorphoses results: simultaneous metamorphoses

Adams, EJB, Mahmoodian (2003)
Simultaneous metamorphoses of small k-wheel designs for &k = 3,4, 6.

A* A=
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%_,Q % % ADAMS

Ragusa (2010)
Simultaneous metamorphoses of A\-fold K3 + e designs
(kite designs) into all possible subgraphs.
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Metamorphoses results: a typical construction
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Metamorphoses results: a typical construction

Order 11: there's a K, — e design (11 blocks), and a 4-cycle packing
(13 4-cycles and triangle leave), BUT no metamorphosis!

e Any vertex has degree 10
e K, — e vertices have degrees 3, 3, 2, 2
Say we have a 4-cycle (x,y, z, w) from removed “diagonal” edges:

NNNN XN

Edge z z cannot be in these four K, — e blocks, (since A = 1)
so must have another block with edge = z, so one of x, z will have total
degree 34+ 3+ 3 =9, leaving degree 1, impossible!

X z

So there is no metamorphosis from a K4 — e design of order 11 into just
11+1 4-cycles, let alone 11+2=13 4-cycles and a triangle leave!
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Do small cases by ad hoc means: orders 6, 10 (11 impossible),
15, (and 15 with a hole of size 5), 16, 16 with hole size 6,
20, 21, 21 with hole size 11, 26, 31.

The leaves for the metamorphoses into 4-cycles are well-known and depend
on the order mod 8 rather than mod 10:

[1-1
a 3-cycle for order 3 (mod 8);

a 5-cycle for order 7 (mod 8); A Q

an even degree graph on 6 edges for order 5 (mod 8);

AVASIP R

0 for order 1 (mod 8).

a 1-factor for even order:
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Metamorphoses results: a typical construction

lllustration of easy case, order 0 (mod 10), when the 4-cycle packing has 1-factor leave.

Have 10k points
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Metamorphoses results: a typical construction

lllustration of easy case, order 0 (mod 10), when the 4-cycle packing has 1-factor leave.

Have 10k points

oofoe oo 2k
oolloe ool
oolloe oo
oolloe ool
oofloe ool

Place a K4 — e design of order 10 on each blue set of vertices;
have metamorphosis into a 4-cycle packing with 1-factor leave.



Metamorphoses results: a typical construction

lllustration of easy case, order 0 (mod 10), when the 4-cycle packing has 1-factor leave.

Have 10k points

ool (oo ooﬁ]Zk . 2k

oo/ (oo 00 oo] 3,

oo 00 oo]

ool e0f 00 oo] oK
XY=YX

oo 00 oo]

Place a K4 — e design of order 10 on each blue set of vertices;
have metamorphosis into a 4-cycle packing with 1-factor leave.
Then take a commutative quasigroup (order 2k) with 2x2 holes on diagonal (ok for k > 3).
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Metamorphoses results: a typical construction

lllustration of easy case, order 0 (mod 10), when the 4-cycle packing has 1-factor leave.

Have 10k points

L VAp— "
eei ool pe e 2k 2
N[ XY/ t2
oo oo o/ oo] 3,
\ /
oo/ ee / i
/
IR Y i ox
) XY=yX
ool |00 i

Place a K4 — e design of order 10 on each blue set of vertices;

have metamorphosis into a 4-cycle packing with 1-factor leave.

Then take a commutative quasigroup (order 2k) with 2x2 holes on diagonal (ok for k > 3).
For all z,y in different holes, take red K, — e blocks.



—

Metamorphoses results: a typical construction

lllustration of easy case, order 0 (mod 10), when the 4-cycle packing has 1-factor leave.

The metamorphosis:

L VAp— "
eei ool pe e 2k 2
N[ XY/ t2
oo oo o/ oo] 3,
\ /
oo/ ee / i
/
IR Y i ox
) XY=yX
ool |00 i

Remove the edges x y from all the K, — e blocks.



Metamorphoses results: a typical construction

—

lllustration of easy case, order 0 (mod 10), when the 4-cycle packing has 1-factor leave.

The metamorphosis:

X y

v

ealfes] poe
Xy "/
¢/
/

o

o

o
re
T~

e
o

o<

)
1
)
1
)

Remove the edges =y from all the K4 — e blocks.

Since x and y are all possible edges, all levels,
with x, y in different holes, these removed edges

rearrange into 4-cycles:

2K

2k
1
2
3
4
2k
XY=YyX
(00 o——#9 | 2K
(00 o0 oo |
(00 o0 oo |
(00 o0 X3
X oo |




Metamorphoses results: a typical construction

RESULT: Lindner & Tripodi
There is a metamorphosis from a K4 — e design into a 4-cycle maximum

packing for all orders 0, 1 (mod 5) except for 5 and 11.



Metamorphoses results: a typical construction

RESULT: Lindner & Tripodi
There is a metamorphosis from a K4 — e design into a 4-cycle maximum

packing for all orders 0, 1 (mod 5) except for 5 and 11.

The A\-fold cases: Tripodi, 2003.



Complete sets of metamorphoses




Complete sets of metamorphoses

Twofold 4-cycle system into twofold 6-cycle system:
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Complete sets of metamorphoses

Twofold 4-cycle system into twofold 6-cycle system:

\ N

\'-ig\( g 'z.\‘ll\ \V/A!'7‘
\ < \‘\ll
\

Paired 4-cycle system



Complete sets of metamorphoses

Twofold 4-cycle system into twofold 6-cycle system:

A5

==

\ ,,\&‘\_‘/-20::\4/&/\‘ '/

AT A

N7~

Remove doubled edges from pairs



Complete sets of metamorphoses

Twofold 4-cycle system into twofold 6-cycle system:

4

‘\ !!% 74 \‘

—
N

1K N \“-i\/" Q)

% N

&
-—i'
¥

/AN A\ i

N R Y

—y
\/
=

S\~ .

R

Rearrange double edges into further 6-cycles



Complete sets of metamorphoses

Twofold 4-cycle system into twofold 6-cycle system:

Metamorphosis, 2-fold 4-cycle system

m m to 2-fold 6-cycle system.
B m Need order n = 0,1,4 or 9 (mod 24).

IA\ /A
\\\/w \..A\ /‘?/;’4
/\/ ’\ ‘_,"b‘ \_!" /‘\
Dal=S
‘é‘-ﬁ‘% A K
- / \"'4: \v‘\ B
N| 4\ ‘
\ A AN

, ¢‘_\'I'/ e\

5

“(

Rearrange double edges into further 6-cycles



Complete sets of metamorphoses

Twofold 4-cycle system into twofold 6-cycle system:

Metamorphosis, 2-fold 4-cycle system
to 2-fold 6-cycle system.

Rearrange double edges into further 6-cycles



Complete sets of metamorphoses I:]:I — I:::I

AIM: Take one fixed 2-fold 4-cycle system of order n. then:
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Take four different pairings of the 4-cycles, for four different metamorphoses
into 6-cycles, so that:



Complete sets of metamorphoses I:]:I — I:::I

AIM: Take one fixed 2-fold 4-cycle system of order n. then:

Take four different pairings of the 4-cycles, for four different metamorphoses
into 6-cycles, so that: all the double edges exactly cover 2/,,.



Complete sets of metamorphoses 11—-=11
AIM: Take one fixed 2-fold 4-cycle system of order n. then:

Take four different pairings of the 4-cycles, for four different metamorphoses
into 6-cycles, so that: all the double edges exactly cover 2/,,.




Complete sets of metamorphoses I:]:I — I:::I

AIM: Take one fixed 2-fold 4-cycle system of order n. then:

Take four different pairings of the 4-cycles, for four different metamorphoses
into 6-cycles, so that: all the double edges exactly cover 2/,,.
4

oo oo o
¢ I
4

Seghsaghsetheey

Metamorphosis A



Complete sets of metamorphoses I:]:I — I:::I

Hardest part: small cases. Cannot do order 9.
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Hardest part: small cases. Cannot do order 9.

There is a metamorphosis, twofold, order 9

But cannot get four such metamorphoses, on the same fixed twofold 4-cycle

system of 2K.
Smallest cases, with n = 0,1,9, 16 (mod 24), are 16, 24, 25 and 33.



Complete sets of metamorphoses I:]:I — I:::I

Hardest part: small cases. Cannot do order 9.

There is a metamorphosis, twofold, order 9

But cannot get four such metamorphoses, on the same fixed twofold 4-cycle

system of 2K.
Smallest cases, with n = 0,1,9, 16 (mod 24), are 16, 24, 25 and 33.

Order 16: computer search.

Order 25: nice cyclic solution.
Also have orders 24 and 33, ad hoc methods.



Complete sets of metamorphoses I:]:I — I:::I

Order 25: V(Ky5) = Zgs. Six starters for 4-cycle system of 2K 5:

HYEREpEERE

Use differences 1,2, . .. 12 (mod 25)
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Order 25: V(Ky5) = Zgs. Six starters for 4-cycle system of 2K 5:
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7 3 23 19 9 23 5 19 8 21 10 23

mod 25
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Order 25: V(Ky5) = Zgs. Six starters for 4-cycle system of 2K 5:
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Complete sets of metamorphoses I:]:I — I:::I

Order 25: V(Ky5) = Zgs. Six starters for 4-cycle system of 2K 5:

0 1 O 1 0 3 0 3 0 6 0 6
7 3 23 19 9 23 5 19 8 21 10 23

mod 25
j 0 TS T 0 5 8I 0 TO
3 1 19 23 3 19 21 6 23



Complete sets of metamorphoses 11—-=11

Order 25: V(Ky5) = Zgs. Six starters for 4-cycle system of 2K 5:

0 1 O 1 0 3 0 3 0 6 0 6
7 3 23 19 9 23 5 19 8 21 10 23
mod 25

BEEREEN,

2.1 7 19 235 3 9 19 21 10 5 8 23




Complete sets of metamorphoses I:]:I — I:::I

Order 25: V(Ky5) = Zgs. Six starters for 4-cycle system of 2K 5:

0 1 O 1 0 3 0 3 0 6 0 6
7 3 23 19 9 23 5 19 8 21 10 23

mod 25
7, 0 , 23 9 9 0 55 8 g 0 1o 10
4 1 14 1{ 3|5 111 121 5 Ilz
32 17 19 235 3 9 19 21 106 8 23

[0.:.1 003:‘3 00?6]




Complete sets of metamorphoses I:]:I — I:::I

Order 25: V(Ky5) = Zgs. Six starters for 4-cycle system of 2K 5:

0 1 O 1 0 3 0 3 0 6 0 6
7 3 23 19 9 23 5 19 8 21 10 23

mod 25
7, 0, 23 99 0 5 8 g 0 45 10
4 1 14 1{ 3|5 111 121 5 Ilz
32 17 19 23 5 3 9 19 21 106 8 23
Oe—1 0s——*3  Oe—=—e5
0 1
6 4



Complete sets of metamorphoses I:]:I — I:::I

Order 25: V(Ky5) = Zgs. Six starters for 4-cycle system of 2K 5:

0 1 O 1 0 3 0 3 0 6 0 6
7 3 23 19 9 23 5 19 8 21 10 23

mod 25
4 1 14 1{ 3|5 111 121 5 112
32 17 19 23°5 3 919 21068 23
[00?1 0e———*3 0.?.6]
0 1
3
6 4
1 6



Complete sets of metamorphoses I:]:I — I:::I

Order 25: V(Ky5) = Zgs. Six starters for 4-cycle system of 2K 5:

0 1 O 1 0 3 0 3 0 6 0 6
7 3 23 19 9 23 5 19 8 21 10 23

mod 25
23 0
L7 00 900 55 8 g J 1010
& ® ®
32 17 19 23 5 3 9 19 21 10 6 8 23
[O.l:.l 003:.3 00?6]
0 1
3
61 £ This is ONE metamorphosis, (A); need 3 more!



Metamorphosis: complete set, order 25

Bl D
Metamorphosis (A):

(3,7,0,1), (0,1,19,23); (23,9,0,3),(0,3,19,5); (21,8,0,6),(0,6,23,10);
doubled edges form one 6-cycle (0,1,4,10,7,6) (all mod 25).



Metamorphosis: complete set, order 25

Bl D
Metamorphosis (A):

(3,7,0,1), (0,1,19,23); (23,9,0,3),(0,3,19,5); (21,8,0,6),(0,6,23,10);
doubled edges form one 6-cycle (0,1,4,10,7,6) (all mod 25).

Metamorphosis (B):
(6,24,0,2),(0,2,3,21); (2,11,0,5),(0,5,19,3): (21,6,0,8),(0,8,2,12);
doubled edges form one 6-cycle (0,2,7,15,10,8) (all mod 25).
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Bl D
Metamorphosis (A):

(3,7,0,1), (0,1,19,23); (23,9,0,3),(0,3,19,5); (21,8,0,6),(0,6,23,10);
doubled edges form one 6-cycle (0,1,4,10,7,6) (all mod 25).

Metamorphosis (B):
(6,24,0,2),(0,2,3,21); (2,11,0,5),(0,5,19,3): (21,6,0,8),(0,8,2,12);
doubled edges form one 6-cycle (0,2,7,15,10,8) (all mod 25).

Metamorphosis (C):
(22,23,0,4),(0,4,6,7); (23,3,0,9),(0,9,6,11); (4,12,0,10),(0,10,23,6):
doubled edges form one 6-cycle (0,4,13,23,14,10) (all mod 25).



Metamorphosis: complete set, order 25

Bl D
Metamorphosis (A):

(3,7,0,1), (0,1,19,23); (23,9,0,3),(0,3,19,5); (21,8,0,6),(0,6,23,10);
doubled edges form one 6-cycle (0,1,4,10,7,6) (all mod 25).

Metamorphosis (B):
(6,24,0,2),(0,2,3,21); (2,11,0,5),(0,5,19,3): (21,6,0,8),(0,8,2,12);
doubled edges form one 6-cycle (0,2,7,15,10,8) (all mod 25).

Metamorphosis (C):
(22,23,0,4),(0,4,6,7); (23,3,0,9),(0,9,6,11); (4,12,0,10),(0,10,23,6):
doubled edges form one 6-cycle (0,4,13,23,14,10) (all mod 25).

Metamorphosis (D):
(3,1,0,7),(0,7,6,4); (2,5,0,11),(0,11,6,9); (4,10,0,12),(0,12,2,8):
doubled edges form one 6-cycle (0,7,18,5,19,12) (all mod 25).



Metamorphosis: complete set, order 25

Bl D
Metamorphosis (A):

(3,7,0,1), (0,1,19,23); (23,9,0,3),(0,3,19,5); (21,8,0,6),(0,6,23,10);
doubled edges form one 6-cycle (0,1,4,10,7,6) (all mod 25).

Metamorphosis (B):
(6,24,0,2),(0,2,3,21); (2,11,0,5),(0,5,19,3): (21,6,0,8),(0,8,2,12);
doubled edges form one 6-cycle (0,2,7,15,10,8) (all mod 25).

Metamorphosis (C):
(22,23,0,4),(0,4,6,7); (23,3,0,9),(0,9,6,11); (4,12,0,10),(0,10,23,6):
doubled edges form one 6-cycle (0,4,13,23,14,10) (all mod 25).

Metamorphosis (D):
(3,1,0,7),(0,7,6,4); (2,5,0,11),(0,11,6,9); (4,10,0,12),(0,12,2,8):
doubled edges form one 6-cycle (0,7,18,5,19,12) (all mod 25).

Note: the collection of all doubled edges exactly covers 2/ ss;
uses differences (A) 1, 3, 6; (B) 2, 5, 8; (C) 4, 9, 10; (D) 7, 11, 12.



Metamorphosis: complete set

2K, forn = 0,1,9,16 (mod 24), not order 9.
Got smallest in each class: 24, 25, 33, 16.
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Taste of Construction, easy case 0 (mod 24):
Lay out n = 24m vertices as follows:




Metamorphosis: complete set

2K, forn = 0,1,9,16 (mod 24), not order 9.
Got smallest in each class: 24, 25, 33, 16.

Taste of Construction, easy case 0 (mod 24):
Lay out n = 24m vertices as follows:

0000 0000 o000 o000 /m
0000 0000 o000 eo0e0 /m
0000 0000 o000 o000
0000 0000 o000 o000
0000 0000 o000 o000
0000 0000 o000 o000 /Im



Metamorphosis: complete set 0 (mod 24)

2K, forn = 0,1,9,16 (mod 24), not order 9.
Got smallest in each class: 24, 25, 33, 16.

Taste of Construction, easy case 0 (mod 24):
Lay out n = 24m vertices as follows:

e ‘eeee) 4m
0000 0000 o000 o000 4m
0000 0000 o000 (X N X
0000 0000 o000 (X N X
0000 0000 0000 o0 oo
0000/ 0000 (0000 e0 00 Iim
2K 2K 2K 2K

24



Metamorphosis: complete set 0 (mod 24)

2K, forn = 0,1,9,16 (mod 24), not order 9.
Got smallest in each class: 24, 25, 33, 16.

Taste of Construction, easy case 0 (mod 24):

Lay out n = 24m vertices as follows:

~
D)

oo

(o

D)
/

(N J o000 ( N J
0000 0000 o000
o000 0000 o000
o000 0000 o000
o000 0000 o000
NCDIGLDIUIL

2Kz

4m

4m

4m



Metamorphosis: complete set 0 (mod 24)

Want a complete set (four pairings of 4-cycles) for 2K 6.
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Metamorphosis: complete set 0 (mod 24)

Want a complete set (four pairings of 4-cycles) for 2K 6.
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Metamorphosis: complete set 0 (mod 24)

Want a complete set (four pairings of 4-cycles) for 2K 6. 1

If cell (x,y) in the latin square contains s, we take two 4-cycles:

(Za, Yp, T,y Sq) and (24, Yy, (x + 1), (s + 2)4), addition mod 3.
So we have two 4-cycles for each cell in the latin square.
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Metamorphosis: complete set 0 (mod 24)

Want a complete set (four pairings of 4-cycles) for 2K 6. 1

If cell (x,y) in the latin square contains s, we take two 4-cycles:

(Za, Yp, T,y Sq) and (24, Yy, (x + 1), (s + 2)4), addition mod 3.
So we have two 4-cycles for each cell in the latin square.

Above two: <1a7 2p, 1, 1d>7 (1a7 2, (1 -+ 1)67 (1 -+ 2>d>-
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Metamorphosis: complete set 0 (mod 24) .

Want a complete set (four pairings of 4-cycles) for 2K 6. 1

If cell (x,y) in the latin square contains s, we take two 4-cycles:

(Za, Yp, T,y Sq) and (24, Yy, (x + 1), (s + 2)4), addition mod 3.
So we have two 4-cycles for each cell in the latin square.

Above two: <1a7 2p, 1, 1d>7 (1a7 2, (1 -+ 1)67 (1 -+ 2>d>-

Need four metamorphoses:

= N O o

NN O ==

O = N~




Metamorphosis: complete set 0 (mod 24), K

Recall: If cell (x,y) in the latin square contains s, we take two 4-cycles:
(Tas Yp, Tey Sq) and (g, Yp, (€ + 1)¢, (s + 2)4), addition mod 3.



Metamorphosis: complete set 0 (mod 24), K

Recall: If cell (x,y) in the latin square contains s, we take two 4-cycles:
(Tas Yp, Tey Sq) and (g, Yp, (€ + 1)¢, (s + 2)4), addition mod 3.

Metamorphosis (A): Use the pairs x,, i,; have all 9 double edges of this type,
and there is an easy 6-cycle decomposition of 2K 3 into three 6-cycles:
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Metamorphosis (A): Use the pairs x,, i,; have all 9 double edges of this type,
and there is an easy 6-cycle decomposition of 2K 3 into three 6-cycles:
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Recall: If cell (x,y) in the latin square contains s, we take two 4-cycles:
(Tas Yp, Tey Sq) and (g, Yp, (€ + 1)¢, (s + 2)4), addition mod 3.

Metamorphosis (A): Use the pairs x,, i,; have all 9 double edges of this type,
and there is an easy 6-cycle decomposition of 2K 3 into three 6-cycles:




Metamorphosis: complete set 0 (mod 24), K

Recall: If cell (x,y) in the latin square contains s, we take two 4-cycles:
(Tas Yp, Tey Sq) and (g, Yp, (€ + 1)¢, (s + 2)4), addition mod 3.

Metamorphosis (A): Use the pairs x,, i,; have all 9 double edges of this type,
and there is an easy 6-cycle decomposition of 2K 3 into three 6-cycles:




Metamorphosis: complete set 0 (mod 24), K

Recall: If cell (x,y) in the latin square contains s, we take two 4-cycles:
(Tas Yp, Tey Sq) and (g, Yp, (€ + 1)¢, (s + 2)4), addition mod 3.

Metamorphosis (A): Use the pairs x,, i,; have all 9 double edges of this type,
and there is an easy 6-cycle decomposition of 2K 3 into three 6-cycles.

04e) (@) 0,
1,0 ° 1b
2, ° 2b
0. ® °0,
1.® ° 1
2.0 [9)2



Metamorphosis: complete set 0 (mod 24), K

Recall: If cell (x,y) in the latin square contains s, we take two 4-cycles:
(Tas Yp, Tey Sq) and (g, Yp, (€ + 1)¢, (s + 2)4), addition mod 3.

Metamorphosis (A): Use the pairs x,, i,; have all 9 double edges of this type,
and there is an easy 6-cycle decomposition of 2K 3 into three 6-cycles.

: O¢)  [®)0,
Metamorphosis (B): 1,0 o1
Use the pairs x, s4; have all 9 double edges 2. . 22
of this type; use 6-cycle system of 2K3 . O, ® °0,

1, .1,
2.0 192



Metamorphosis: complete set 0 (mod 24), K

Recall: If cell (x,y) in the latin square contains s, we take two 4-cycles:
(Tas Yp, Tey Sq) and (g, Yp, (€ + 1)¢, (s + 2)4), addition mod 3.

Metamorphosis (A): Use the pairs x,, i,; have all 9 double edges of this type,
and there is an easy 6-cycle decomposition of 2K 3 into three 6-cycles.

04e) /.\Ob

Metamorphosis (B): 1 e S

Use the pairs z, s4; have all 9 double edges 2, @ o zz

of this type; use 6-cycle system of 2K3 . 0. ® °0,
o o

Metamorphosis (C): %C. . ;d

c\_/ NS

Use the pairs . y;; then as above get 6-cycles.



Metamorphosis: complete set 0 (mod 24), K

Recall: If cell (x,y) in the latin square contains s, we take two 4-cycles:
(Tas Yp, Tey Sq) and (g, Yp, (€ + 1)¢, (s + 2)4), addition mod 3.

Metamorphosis (A): Use the pairs x,, i,; have all 9 double edges of this type,
and there is an easy 6-cycle decomposition of 2K 3 into three 6-cycles.

04e) /.\Ob

Metamorphosis (B): 1 e S

Use the pairs z, s4; have all 9 double edges 2, @ o zz

of this type; use 6-cycle system of 2K3 . 0. ® °0,
o o

Metamorphosis (C): %C. . ;d

c\_/ NS

Use the pairs . y;; then as above get 6-cycles.

Metamorphosis (D):
Use the pairs x. s4; then as above get 6-cycles.



Metamorphosis: complete set 0 (mod 24), K

Recall: If cell (x,y) in the latin square contains s, we take two 4-cycles:
(Tas Yp, Tey Sq) and (g, Yp, (€ + 1)¢, (s + 2)4), addition mod 3.

Metamorphosis (A): Use the pairs x,, i,; have all 9 double edges of this type,
and there is an easy 6-cycle decomposition of 2K 3 into three 6-cycles.

04e) /.\Ob

Metamorphosis (B): 1 e S

Use the pairs z, s4; have all 9 double edges 2, @ o zz

of this type; use 6-cycle system of 2K3 . 0. ® °0,
o o

Metamorphosis (C): %C. . X

c\_/ \/Zd

Use the pairs . y;; then as above get 6-cycles.

Metamorphosis (D):
Use the pairs x. s4; then as above get 6-cycles.

So we have a complete set of (four) metamorphoses from this one twofold
4-cycle decomposition of 2K .



Metamorphosis: complete set 0 (mod 24)

So using complete sets of 2K and /44 we have 2K,

(eo(0e)(e0ee) e@ee) --- (eeee) 4m
0000 06000 o000 SR o000 /m
o000 0000 o000 ... o000
o000 o000 o000 ... o000
o000 o000 o000 ... o0 oo
o0 o000 o0 o000 Iim

JEERR

ZKM-\\\\ZKM///% Km. ZKM
2K




Metamorphosis: complete set 0,1,9,16 (mod 24)

1 (mod 24) is similar (use 2K5; and have an “infinity” point).



Metamorphosis: complete set 0,1,9,16 (mod 24)

1 (mod 24) is similar (use 2K5; and have an “infinity” point).

o000 0000 0000 - - 0000
o000 0000 0000 - - 0000
o000/ 0000 0000 - - |e0o00
XJOL w eoee ... \o\o_o/o)4m
2Ky \ 2K / 2Ky 2K



Metamorphosis: complete set 0,1,9,16 (mod 24)

1 (mod 24) is similar (use 2K5; and have an “infinity” point).
9 and 16 (mod 24) are slightly more fiddly ...



Metamorphosis: complete set 0,1,9,16 (mod 24)

1 (mod 24) is similar (use 2K5; and have an “infinity” point).
9 and 16 (mod 24) are slightly more fiddly ...
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Metamorphosis: complete set 0,1,9,16 (mod 24)

1 (mod 24) is similar (use 2K5; and have an “infinity” point).
9 and 16 (mod 24) are slightly more fiddly ...

Theorem There exists a complete set of metamorphoses of
a twofold 4-cycle system of 2/, into twofold 6-cycle systems

if and only if n = 0,1,9,16 (mod 24), n # 9.

I:]:I — I::I (four pairings)
Also complete sets found for:
twofold paired 3-cycles into 4-cycles j[ o <>
(Lindner, Meszka, Rosa);
and paired K 3 into 4-cycles (EJB, Khodkar, Lindner). ._O_’ - -Q-
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Open Problem: metamorphosis from theta graph design to cycle system

O(a, b, c) is a cycle of length b + ¢ with a path of length a joining vertices
distance b (or ¢) apart.

<

0(1,2,2) =K,—e  ©6(1,3,3) O(1,4,4)

Some results on existence of theta graphs O(1, k, k) of order n: &8
k odd and n = 0 (mod 2k + 1), but NOT O(1, 3, 3) of order 7; ]
k odd and n =1 (mod (2k + 1)), some results. il

Blinco, 2001 :
(a) Complete the existence work on © designs of type O(1, k, k).

(b) What about a metamorphosis, from a O(1, k, k) design of order n into
a 2k-cycle design (or packing) of order n?



Open Problem: resolvable metamorphosis

Example: resolvable K -design of order 16 (an affine plane of order 4, or a (16,20,5,4,1)

BIBD); find a metamorphosis into a resolvable maximum packing with 4-cycles.



Open Problem: resolvable metamorphosis

Example: resolvable K -design of order 16 (an affine plane of order 4, or a (16,20,5,4,1)

BIBD); find a metamorphosis into a resolvable maximum packing with 4-cycles.

XXX
XX
XXX
XX I
XXX




Open Problem: resolvable metamorphosis

Example: resolvable K -design of order 16 (an affine plane of order 4, or a (16,20,5,4,1)

BIBD); find a metamorphosis into a resolvable maximum packing with 4-cycles.

[EnN

5

MK
4 313 91 111 121 10
SXG 2X6 ZX5ZX8 27
8 7114 10|21 121 111 9
RO
1 1115 1114 91 1001 12
lzXM 4X 8 43X 7 4X6 4X5
1&%15/16 121 10(15 9 4 11




Open Problem: resolvable metamorphosis

Example: resolvable K -design of order 16 (an affine plane of order 4, or a (16,20,5,4,1)

BIBD); find a metamorphosis into a resolvable maximum packing with 4-cycles.
10—02 lg o5 1X6 :X7 1 8
46—@3|1306—8 g 111 1215X10
Se— @6/ 20—@6 2z5 zzs X7

12 111 9
%910 3e—o7 3X8 Xs BXG
120—© 17 150—® 17 |1 4 91 10[L 12

8

g9, 146—9 101

139914 40—9@ 5|4
1

LI
10/L 9 14 11

|

~e—eoo



Open Problem: resolvable metamorphosis

Example: resolvable K -design of order 16 (an affine plane of order 4, or a (16,20,5,4,1)

BIBD); find a metamorphosis into a resolvable maximum packing with 4-cycles.

NN IR

4 313 91 111 121 10

Se— @6/ 20—@6 2z5 zzs X7

12 111 9

1 111 1114 91 1011 12
8

149—® 101

139914 40—9@ 5|4 7 z;ze 4x5
1 10/L 9 14 11

|

ceo—eoo



Open Problem: resolvable metamorphosis

Example: resolvable K -design of order 16 (an affine plane of order 4, or a (16,20,5,4,1)

BIBD); find a metamorphosis into a resolvable maximum packing with 4-cycles.

4 313 91 111 121 10

So— 96 ZSG 2z5 zzs X7

9 14 1001 12 111 9

1 111 1114 91 1011 12
8

139914 43 g |4 7 LLXG 4X5
*—o 1 10/L 9 14 11

|

ceo—eoo



Open Problem: resolvable metamorphosis

Example: resolvable K -design of order 16 (an affine plane of order 4, or a (16,20,5,4,1)

BIBD); find a metamorphosis into a resolvable maximum packing with 4-cycles.

=

XX IR
4 3|13 9|1 111 121 10
XG ZS:G 2XSZX8 X7
8 7114 10|1 121 111, 9
NI RIS
1 111 1114 91 100 12
BSM 4§ 8 4X 7 ZXG 4X5
1&%15|16 121 101 9 4 11
8

|

S @O——@ O

ceo—eoo

16
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Example: resolvable K -design of order 16 (an affine plane of order 4, or a (16,20,5,4,1)
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Open Problem: resolvable metamorphosis

Example: resolvable K -design of order 16 (an affine plane of order 4, or a (16,20,5,4,1)

BIBD); find a metamorphosis into a resolvable maximum packing with 4-cycles.

1 2] 1
*—+o o—05 loe—06 lo—¢7 lo—eg lo—e10
o—o
46— @3 1360 g ||® 000,60 8 1
20—09
S 06/20—96(26—9520—93|20—9;
70—016
g® @7 146910159 —912130—9 11159 30— 817
%910 30—97(306—95/30—05(306—056 co—e13
10—01]
100—@17/150— @171, — 09160771306 01)
50—®14
139 @14 40— 95 (40—97/40—96 |410—05 L factor
9 leave
18 %15(16% ®12{1%®1op5® 00 14&—011
1 32 45 7 6 8|1 113 9 5 157 13
9 1110 12 13 1514 16[12 2 10 4 16 6 14 8



Open Problem: resolvable metamorphosis

Example: resolvable K -design of order 16 (an affine plane of order 4, or a (16,20,5,4,1)
BIBD); find a metamorphosis into a resolvable maximum packing with 4-cycles.
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Open Problem: resolvable metamorphosis

Example: resolvable K -design of order 16 (an affine plane of order 4, or a (16,20,5,4,1)
BIBD); find a metamorphosis into a resolvable maximum packing with 4-cycles.

In general, take a

Ijz 11:15 j:Ia 1I:Iy 1138 lo— ey resolvable K -design of
o—O
4 313 91 1114 1215 10 8 15 order 12n + 4,
e 6| 2 6 |2 5o gl , 26799 4nd find a metamorphosis
I:I lj l:I lj T it Ivabl
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g®—© |14 101 121 111 9 10— 910 | | |
maximum packing with

‘% —9030—97(30—03/30—05|36—056 ce—e13
se—e11  4-cycles (of same order)

56—®14  3nd leave a 1-factor.
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Resolvable 4-cycle systems, almost resolvable 4-cycle systems, and packings/coverings of
these: existence has recently been dealt with. But that’s another story!




