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Graph decomposition and metamorphosis example

Take a graph K (often complete graph Kn or complete bipartite graph
Km,n); partition its edges into copies of a fixed graph G.

Example: K10 into copies of K4 − e.
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4-cycle packing of order 10 with
leave a 1-factor.
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Graph decomposition and metamorphosis

Such a metamorphosis from some K4 − e design of order n into a 4-cycle
packing (of order n) exists for all orders 0 or 1 (mod 5), but not order 11.

Example: K10 into copies of K4 − e.
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(not 5) (Lindner & Tripodi, 2005)
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Some necessary basics for any graph design

A λ-fold G design of order n is an edge disjoint decomposition of λKn

into copies of G.
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If G = Kk, a λ-fold G-design is a BIBD (v, k, λ): an edge-disjoint decom-
position of λKv into copies of Kk.

So λ-fold G-designs are a generalisation of block designs
(blocks G instead of k-sets Kk as blocks).

For existence of a λ-fold G design of order n, some necessary conditions are
easy to find.

• n > |V (G)| if n > 1 (enough vertices!)

• λ
(
n
2

)
must be divisible by |E(G)| (edge count)

• λ(n− 1) must be divisible by gcd of degrees of the vertices in G
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G-design to H-design metamorphosis

Start: G design of order n (maybe λ-fold),
so have an edge-disjoint decomposition of λKn into copies of a graph G.
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G-design to H-design metamorphosis

Start: G design of order n (maybe λ-fold),
so have an edge-disjoint decomposition of λKn into copies of a graph G.

Take a subgraph H of G.

Take H from each G-block, and keep this copy of H, from each G-block.

Rearrange (if possible) all the edges from E(G \H) (for all blocks G) into
further copies of H.

Result is a metamorphosis from a G-design into an H-design
of the same order.
(Or try to get a maximum packing of an H-design if the order n isn’t right for H!)
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Some metamorphosis pre-history

1996: Darryn Bryant
There exist pairs of K4-designs of order n
so that removal of a 3-star (a point and
its adjacent edges) from each block in both designs
(keeping remaining triangles) results in a K3-design
(or Steiner Triple System) if and only if n ≡ 1 (mod 12).

“Partitionable nested Steiner triple systems”.

4 designstwo K

and
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Some metamorphosis pre-history

1996: Darryn Bryant
(order 1 (mod 12))

and

and

Red and blue triangles form
one Steiner triple system
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Metamorphoses results: K4 design into subgraphs

Metamorphosis from a λ-fold K4-design of order n into a G-design of the
same order (or a packing), has been done for all subgraphs of K4, so starting
with a BIBD (n, 4, λ):
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same order (or a packing), has been done for all subgraphs of K4, so starting
with a BIBD (n, 4, λ):

4-cycle Lindner & Street (2000)

Lindner Street Rosa3-cycle Lindner & Rosa (2002)

(Bryant’s 1996 “partitionable nesting” did λ = 1)

3-cycle + pendant edge
EJB, Dancer, Küçükçifçi & Lindner (2002)
Küçükçifçi, Smith, Yazıcı, λ-fold (2011)

Dancer Smith Yazıcı
Küçükçifçi
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Metamorphoses results: K4 design into subgraphs

Metamorphosis from a λ-fold K4-design of order n into a G-design of the
same order (or a packing), has been done for all subgraphs of K4, so starting
with a BIBD (n, 4, λ):

4-cycle Lindner & Street (2000)

Lindner Street Rosa3-cycle Lindner & Rosa (2002)

(Bryant’s 1996 “partitionable nesting” did λ = 1)

3-cycle + pendant edge
EJB, Dancer, Küçükçifçi & Lindner (2002)
Küçükçifçi, Smith, Yazıcı, λ-fold (2011)

Dancer Smith Yazıcı
Küçükçifçi

K4 − e Lindner & Rosa (2002); Lindner & Küçükçifçi (λ-fold, 2003)

P4; P3; K1,3; two disjoint edges; various.
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Metamorphoses results: other G designs

Other G-designs and metamorphoses into subgraphs have been considered.

K4 − e designs and metamorphosis into:
4-cycles (and packing) Lindner & Tripodi (2005)

3-cycle + pendant edge (λ-fold) Chang, Lo Faro & Tripodi (2007)

or

Tripodi Lo Faro Chang

3-cycle + pendant edge (“kite”) λ-fold designs into
maximum packings of λ-fold triple systems. Lindner, Lo Faro & Tripodi (2006)

4-wheel into bowtie (λ-fold) EJB (2000)
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Metamorphoses results

“Two generalizations of metamorphosis,” Ling & Quattrocchi (2005)

Ling Quattrocchi

(a) take a maximum packing, already considered;

(b) (reminiscent of embeddings)
with H a subgraph of G, a G-design of order n
is changed into an H-design of order v with v > n.
So v − n new vertices (as few as possible) are added.

Ling and Quattrocchi use attack (b) for λ-fold K4-designs into
λ-fold K3-designs. They add v − n = 0, 1 or 3 new vertices.
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Metamorphoses results: other G designs
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K3,3 designs into 6-cycle systems (λ-fold) EJB & Quattrocchi (2002)
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Metamorphoses results: other G designs

Other G-designs and metamorphoses:

K3,3 designs into 6-cycle systems (λ-fold) EJB & Quattrocchi (2002)

More generally,

Some Kn,n designs, into 2n-cycle systems (trivial when n even) EJB (2004)

K4 + e designs into K4 designs, any λ
Chang, Lo Faro & Tripodi (2008)

Chang Lo Faro Tripodi

Hypergraph metamorphosis, (3-uniform), K
(3)
4 into K

(3)
4 − e

Chang, Feng, Lo Faro & Tripodi (2010)
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Metamorphoses results: simultaneous metamorphoses

Adams, EJB, Mahmoodian (2003)

Simultaneous metamorphoses of small k-wheel designs for k = 3, 4, 6.

Adams Mahmoodian
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Metamorphoses results: simultaneous metamorphoses

Adams, EJB, Mahmoodian (2003)

Simultaneous metamorphoses of small k-wheel designs for k = 3, 4, 6.

Adams Mahmoodian

Ragusa (2010)

Simultaneous metamorphoses of λ-fold K3 + e designs
(kite designs) into all possible subgraphs.

Ragusa
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Metamorphoses results: a typical construction

Various constructions used, including:
GDDs, skew Room squares / commutative quasigroups, with holes, etc.

Consider a metamorphosis from a K4 − e design of order n
into a 4-cycle system packing. (Recall earlier example, of order 10.)

Necessary: order n must be 0 or 1 (mod 5).
Also cannot do order 5, nor a metamorphosis of order 11.

Order 6 is easy:

+
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Metamorphoses results: a typical construction

Order 5: no K4 − e design:

+
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Metamorphoses results: a typical construction

Order 11: there’s a K4 − e design (11 blocks), and a 4-cycle packing
(13 4-cycles and triangle leave), BUT no metamorphosis!
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z
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Order 11: there’s a K4 − e design (11 blocks), and a 4-cycle packing
(13 4-cycles and triangle leave), BUT no metamorphosis!

• Any vertex has degree 10
• K4 − e vertices have degrees 3, 3, 2, 2
Say we have a 4-cycle (x, y, z, w) from removed “diagonal” edges:

xx w

z

z

y

y

xw

z

Edge x z cannot be in these four K4 − e blocks, (since λ = 1)
so must have another block with edge x z, so one of x, z will have total
degree 3 + 3 + 3 = 9, leaving degree 1, impossible!
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Order 11: there’s a K4 − e design (11 blocks), and a 4-cycle packing
(13 4-cycles and triangle leave), BUT no metamorphosis!

• Any vertex has degree 10
• K4 − e vertices have degrees 3, 3, 2, 2
Say we have a 4-cycle (x, y, z, w) from removed “diagonal” edges:

xx w

z

z

y

y

xw

z

Edge x z cannot be in these four K4 − e blocks, (since λ = 1)
so must have another block with edge x z, so one of x, z will have total
degree 3 + 3 + 3 = 9, leaving degree 1, impossible!

So there is no metamorphosis from a K4 − e design of order 11 into just
11+1 4-cycles, let alone 11+2=13 4-cycles and a triangle leave!

35



Metamorphoses results: a typical construction
Treat order n in four cases; n ≡ 0,1,5,6 (mod 10).
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on the order mod 8 rather than mod 10:

a 1-factor for even order;
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Metamorphoses results: a typical construction
Treat order n in four cases; n ≡ 0,1,5,6 (mod 10).

Do small cases by ad hoc means: orders 6, 10 (11 impossible),
15, (and 15 with a hole of size 5), 16, 16 with hole size 6,
20, 21, 21 with hole size 11, 26, 31.

The leaves for the metamorphoses into 4-cycles are well-known and depend
on the order mod 8 rather than mod 10:

a 1-factor for even order;

a 3-cycle for order 3 (mod 8);
a 5-cycle for order 7 (mod 8);

an even degree graph on 6 edges for order 5 (mod 8);

OR OR
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Metamorphoses results: a typical construction
Treat order n in four cases; n ≡ 0,1,5,6 (mod 10).

Do small cases by ad hoc means: orders 6, 10 (11 impossible),
15, (and 15 with a hole of size 5), 16, 16 with hole size 6,
20, 21, 21 with hole size 11, 26, 31.

The leaves for the metamorphoses into 4-cycles are well-known and depend
on the order mod 8 rather than mod 10:

a 1-factor for even order;

a 3-cycle for order 3 (mod 8);
a 5-cycle for order 7 (mod 8);

an even degree graph on 6 edges for order 5 (mod 8);

OR OR

∅ for order 1 (mod 8).
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Metamorphoses results: a typical construction

Orders 1 and 5 (mod 10), odd, have “small” leave for the 4-cycle packing; construction is

a bit fiddly!
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Metamorphoses results: a typical construction

Orders 1 and 5 (mod 10), odd, have “small” leave for the 4-cycle packing; construction is

a bit fiddly!

Illustration of easy case, order 0 (mod 10), when the 4-cycle packing has 1-factor leave.
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Metamorphoses results: a typical construction

Illustration of easy case, order 0 (mod 10), when the 4-cycle packing has 1-factor leave.

Have 10k points

2k
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Metamorphoses results: a typical construction

Illustration of easy case, order 0 (mod 10), when the 4-cycle packing has 1-factor leave.

Have 10k points

2k

Place a K4 − e design of order 10 on each blue set of vertices;

have metamorphosis into a 4-cycle packing with 1-factor leave.
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Metamorphoses results: a typical construction

Illustration of easy case, order 0 (mod 10), when the 4-cycle packing has 1-factor leave.

Have 10k points

4

2k

3
2

1
2k

xy=yx

2k

Place a K4 − e design of order 10 on each blue set of vertices;

have metamorphosis into a 4-cycle packing with 1-factor leave.

Then take a commutative quasigroup (order 2k) with 2×2 holes on diagonal (ok for k > 3).
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Metamorphoses results: a typical construction

Illustration of easy case, order 0 (mod 10), when the 4-cycle packing has 1-factor leave.

Have 10k points

2k

4
3

2
1

x y

xy

xy xy=yx

2k2k

Place a K4 − e design of order 10 on each blue set of vertices;

have metamorphosis into a 4-cycle packing with 1-factor leave.

Then take a commutative quasigroup (order 2k) with 2×2 holes on diagonal (ok for k > 3).

For all x, y in different holes, take red K4 − e blocks.
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Metamorphoses results: a typical construction

Illustration of easy case, order 0 (mod 10), when the 4-cycle packing has 1-factor leave.

The metamorphosis:

2k

4
3

2
1

x y

xy

xy xy=yx

2k2k

Remove the edges x y from all the K4 − e blocks.
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Metamorphoses results: a typical construction
Illustration of easy case, order 0 (mod 10), when the 4-cycle packing has 1-factor leave.

The metamorphosis:

2k

4
3

2
1

x y

xy

xy xy=yx

2k2k

Remove the edges x y from all the K4 − e blocks.

Since x and y are all possible edges, all levels,

with x, y in different holes, these removed edges

rearrange into 4-cycles:

2k
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Metamorphoses results: a typical construction

Result: Lindner & Tripodi

There is a metamorphosis from a K4 − e design into a 4-cycle maximum
packing for all orders 0, 1 (mod 5) except for 5 and 11.
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Metamorphoses results: a typical construction

Result: Lindner & Tripodi

There is a metamorphosis from a K4 − e design into a 4-cycle maximum
packing for all orders 0, 1 (mod 5) except for 5 and 11.

The λ-fold cases: Tripodi, 2003.
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Complete sets of metamorphoses
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Complete sets of metamorphoses

Twofold 4-cycle system into twofold 6-cycle system:

2Kn
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Complete sets of metamorphoses

Twofold 4-cycle system into twofold 6-cycle system:

Paired 4-cycle system
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Complete sets of metamorphoses

Twofold 4-cycle system into twofold 6-cycle system:

+

Remove doubled edges from pairs
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Complete sets of metamorphoses

Twofold 4-cycle system into twofold 6-cycle system:

+

Rearrange double edges into further 6-cycles

49



Complete sets of metamorphoses

Twofold 4-cycle system into twofold 6-cycle system:

+

Rearrange double edges into further 6-cycles

Metamorphosis, 2-fold 4-cycle system
to 2-fold 6-cycle system.

Need order n ≡ 0,1,4 or 9 (mod 24).
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Complete sets of metamorphoses

Twofold 4-cycle system into twofold 6-cycle system:

+

Rearrange double edges into further 6-cycles

Metamorphosis, 2-fold 4-cycle system
to 2-fold 6-cycle system.

Need order n ≡ 0,1,4 or 9 (mod 24).

Şule Yazıcı 2005.
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Complete sets of metamorphoses
AIM: Take one fixed 2-fold 4-cycle system of order n. then:
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Complete sets of metamorphoses
AIM: Take one fixed 2-fold 4-cycle system of order n. then:

Take four different pairings of the 4-cycles, for four different metamorphoses
into 6-cycles, so that:
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Complete sets of metamorphoses
AIM: Take one fixed 2-fold 4-cycle system of order n. then:

Take four different pairings of the 4-cycles, for four different metamorphoses
into 6-cycles, so that:all the double edges exactly cover 2Kn.
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Complete sets of metamorphoses
AIM: Take one fixed 2-fold 4-cycle system of order n. then:

Take four different pairings of the 4-cycles, for four different metamorphoses
into 6-cycles, so that:all the double edges exactly cover 2Kn.

EJB, Cavenagh & Khodkar (2011+)

50



Complete sets of metamorphoses
AIM: Take one fixed 2-fold 4-cycle system of order n. then:

Take four different pairings of the 4-cycles, for four different metamorphoses
into 6-cycles, so that:all the double edges exactly cover 2Kn.

CBMetamorphosis A D

3

++++

2

321

4

14

2

3

14 2

4

3

41

3

4

123

2

1
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Complete sets of metamorphoses
Hardest part: small cases. Cannot do order 9.
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Complete sets of metamorphoses
Hardest part: small cases. Cannot do order 9.

There is a metamorphosis, twofold, order 9
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Complete sets of metamorphoses
Hardest part: small cases. Cannot do order 9.

There is a metamorphosis, twofold, order 9

But cannot get four such metamorphoses, on the same fixed twofold 4-cycle
system of 2K9.
Smallest cases, with n ≡ 0, 1, 9, 16 (mod 24), are 16, 24, 25 and 33.
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Complete sets of metamorphoses
Hardest part: small cases. Cannot do order 9.

There is a metamorphosis, twofold, order 9

But cannot get four such metamorphoses, on the same fixed twofold 4-cycle
system of 2K9.
Smallest cases, with n ≡ 0, 1, 9, 16 (mod 24), are 16, 24, 25 and 33.

Order 16: computer search.
Order 25: nice cyclic solution.
Also have orders 24 and 33, ad hoc methods.
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Complete sets of metamorphoses

Order 25: V (K25) = Z25. Six starters for 4-cycle system of 2K25:

Use differences 1,2, . . . 12 (mod 25)
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Complete sets of metamorphoses

Order 25: V (K25) = Z25. Six starters for 4-cycle system of 2K25:

0 1

192337

10 3 0 3

195

0 6

218

0 6

23109 23

mod 25

0
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Complete sets of metamorphoses

Order 25: V (K25) = Z25. Six starters for 4-cycle system of 2K25:

2

4

7

1 0

mod 25

239 10 23

60

8 21

60

5 19

31

11 12

8

663

10

12

108

11

9559

3

4

72

030 1

7 3 23 19

10
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Complete sets of metamorphoses

Order 25: V (K25) = Z25. Six starters for 4-cycle system of 2K25:

30 1

7 3 23 19

10 00

mod 25

239 10 23

60

8 21

60

5 19

3
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Complete sets of metamorphoses

Order 25: V (K25) = Z25. Six starters for 4-cycle system of 2K25:

0

8 21

60

5 19

3030 1

7 3 23 19

10 60

mod 25

21 6 23

1008

23 3 19

509

3 1 19

2307

239 10 23
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Complete sets of metamorphoses

Order 25: V (K25) = Z25. Six starters for 4-cycle system of 2K25:

23

7 0 23

1913

9 0 5

19323

8

9

0 3 0 3

195

0 6

218

0 6

2310

0

5 9

11

59

6
6

10

12

810

12

8

0

11

10

23621

mod 25

1 1

2

4

72

4

7

3
3

1 0 1

192337
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Complete sets of metamorphoses

Order 25: V (K25) = Z25. Six starters for 4-cycle system of 2K25:

7 0 23

1913

9 0 5

19323

8 0 10

236

237

10 3 0 3

195

0 6

218

0 6

23109

21

3
3 11

5 9

11

59

6
6

10

12

810

12

8

0

7

0 1 0 3 0 6

mod 25

31 6

1 1

2

4

72

4

3

0 1

1923

59



Complete sets of metamorphoses

Order 25: V (K25) = Z25. Six starters for 4-cycle system of 2K25:

0 23

1913

9 0 5

19323

8 0 10

23621

0

7

37

10 3 0 3

195

0 6

218

0 6

23109 23

1

4

7

3
3 11

5 9

11

59

6
6

10

12

810

12

8

0

2

0 3 0 6

1

7

6

10

4

0

mod 25

31 6

1 1

2

4

7

23

0 1

19

60



Complete sets of metamorphoses

Order 25: V (K25) = Z25. Six starters for 4-cycle system of 2K25:

3

9 0 5

19323

8 0 10

23621

0 1 0 3 0 6

1

0 3 0 3

195

0 6

218

0 6

23109 23

7 0 23

19

1

4

7

3
3 11

5 9

11

59

6
6

10

12

810

12

8

0

2

7

6

10

4

0

mod 25

31 6

1

1

3

3

6

6

1 1

2

4

7

1 0 1

192337

61



Complete sets of metamorphoses

Order 25: V (K25) = Z25. Six starters for 4-cycle system of 2K25:

23

7 0 23

1913

9 0 5

19323

8 0 10

23621

9

1

192337

10 3 0 3

195

0 6

218

0 6

2310

0

2

4

72

4

7

11

5 9

11

59 10

12

810

12

8

0

6

1 0 3 0 6

1

7

6

10

4

0

mod 25

31 6

1

1

3

3

6

0

This is ONE metamorphosis, (A); need 3 more!
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Metamorphosis: complete set, order 25

Metamorphosis (A):
(3,7,0,1), (0,1,19,23); (23,9,0,3),(0,3,19,5); (21,8,0,6),(0,6,23,10);
doubled edges form one 6-cycle (0, 1, 4, 10, 7, 6) (all mod 25).
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Metamorphosis: complete set, order 25

Metamorphosis (A):
(3,7,0,1), (0,1,19,23); (23,9,0,3),(0,3,19,5); (21,8,0,6),(0,6,23,10);
doubled edges form one 6-cycle (0, 1, 4, 10, 7, 6) (all mod 25).

Metamorphosis (B):
(6,24,0,2),(0,2,3,21); (2,11,0,5),(0,5,19,3); (21,6,0,8),(0,8,2,12);
doubled edges form one 6-cycle (0,2,7,15,10,8) (all mod 25).
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Metamorphosis: complete set, order 25

Metamorphosis (A):
(3,7,0,1), (0,1,19,23); (23,9,0,3),(0,3,19,5); (21,8,0,6),(0,6,23,10);
doubled edges form one 6-cycle (0, 1, 4, 10, 7, 6) (all mod 25).

Metamorphosis (B):
(6,24,0,2),(0,2,3,21); (2,11,0,5),(0,5,19,3); (21,6,0,8),(0,8,2,12);
doubled edges form one 6-cycle (0,2,7,15,10,8) (all mod 25).

Metamorphosis (C):
(22,23,0,4),(0,4,6,7); (23,3,0,9),(0,9,6,11); (4,12,0,10),(0,10,23,6);
doubled edges form one 6-cycle (0,4,13,23,14,10) (all mod 25).
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Metamorphosis: complete set, order 25

Metamorphosis (A):
(3,7,0,1), (0,1,19,23); (23,9,0,3),(0,3,19,5); (21,8,0,6),(0,6,23,10);
doubled edges form one 6-cycle (0, 1, 4, 10, 7, 6) (all mod 25).

Metamorphosis (B):
(6,24,0,2),(0,2,3,21); (2,11,0,5),(0,5,19,3); (21,6,0,8),(0,8,2,12);
doubled edges form one 6-cycle (0,2,7,15,10,8) (all mod 25).

Metamorphosis (C):
(22,23,0,4),(0,4,6,7); (23,3,0,9),(0,9,6,11); (4,12,0,10),(0,10,23,6);
doubled edges form one 6-cycle (0,4,13,23,14,10) (all mod 25).

Metamorphosis (D):
(3,1,0,7),(0,7,6,4); (2,5,0,11),(0,11,6,9); (4,10,0,12),(0,12,2,8);
doubled edges form one 6-cycle (0,7,18,5,19,12) (all mod 25).
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Metamorphosis: complete set, order 25

Metamorphosis (A):
(3,7,0,1), (0,1,19,23); (23,9,0,3),(0,3,19,5); (21,8,0,6),(0,6,23,10);
doubled edges form one 6-cycle (0, 1, 4, 10, 7, 6) (all mod 25).

Metamorphosis (B):
(6,24,0,2),(0,2,3,21); (2,11,0,5),(0,5,19,3); (21,6,0,8),(0,8,2,12);
doubled edges form one 6-cycle (0,2,7,15,10,8) (all mod 25).

Metamorphosis (C):
(22,23,0,4),(0,4,6,7); (23,3,0,9),(0,9,6,11); (4,12,0,10),(0,10,23,6);
doubled edges form one 6-cycle (0,4,13,23,14,10) (all mod 25).

Metamorphosis (D):
(3,1,0,7),(0,7,6,4); (2,5,0,11),(0,11,6,9); (4,10,0,12),(0,12,2,8);
doubled edges form one 6-cycle (0,7,18,5,19,12) (all mod 25).

Note: the collection of all doubled edges exactly covers 2K25;
uses differences (A) 1, 3, 6; (B) 2, 5, 8; (C) 4, 9, 10; (D) 7, 11, 12.
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Metamorphosis: complete set

2Kn for n ≡ 0,1,9,16 (mod 24), not order 9.
Got smallest in each class: 24, 25, 33, 16.
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Metamorphosis: complete set

2Kn for n ≡ 0,1,9,16 (mod 24), not order 9.
Got smallest in each class: 24, 25, 33, 16.

Taste of Construction, easy case 0 (mod 24):
Lay out n = 24m vertices as follows:
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Metamorphosis: complete set

2Kn for n ≡ 0,1,9,16 (mod 24), not order 9.
Got smallest in each class: 24, 25, 33, 16.

Taste of Construction, easy case 0 (mod 24):
Lay out n = 24m vertices as follows:

m4

m4

m4
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Metamorphosis: complete set 0 (mod 24)

2Kn for n ≡ 0,1,9,16 (mod 24), not order 9.
Got smallest in each class: 24, 25, 33, 16.

Taste of Construction, easy case 0 (mod 24):
Lay out n = 24m vertices as follows:

242K242K24

m4

m4

m4

2K2K24
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Metamorphosis: complete set 0 (mod 24)

2Kn for n ≡ 0,1,9,16 (mod 24), not order 9.
Got smallest in each class: 24, 25, 33, 16.

Taste of Construction, easy case 0 (mod 24):
Lay out n = 24m vertices as follows:

24

m4

m4

m4

2K 2K24 2K24

2K6,6

2K24
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Metamorphosis: complete set 0 (mod 24)

Want a complete set (four pairings of 4-cycles) for 2K6,6.
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Metamorphosis: complete set 0 (mod 24)

Want a complete set (four pairings of 4-cycles) for 2K6,6.

0 1 2

0 0 1 2
1 2 0 1
2 1 2 0
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Metamorphosis: complete set 0 (mod 24)

Want a complete set (four pairings of 4-cycles) for 2K6,6.

0 1 2

0 0 1 2
1 2 0 1
2 1 2 0

2

b

b

b

d

d

d

0
1
2

0
1
2

a

a

a

c

c

c

1

0
1
2
0
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Metamorphosis: complete set 0 (mod 24)

Want a complete set (four pairings of 4-cycles) for 2K6,6.

0 1 2

0 0 1 2
1 2 0 1
2 1 2 0

b

b

b

2

d

d

d

0
1
2

0
1
2

a

a

a

c

c

c

0

0
1
2

1
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Metamorphosis: complete set 0 (mod 24)

Want a complete set (four pairings of 4-cycles) for 2K6,6.

0 1 2

0 0 1 2
1 2 0 1
2 1 2 0

b

b

b

2

d

d

d

0
1
2

0
1
2

a

a

a

c

c

c

0

0
1
2

1

If cell (x, y) in the latin square contains s, we take two 4-cycles:
(xa, yb, xc, sd) and (xa, yb, (x + 1)c, (s + 2)d), addition mod 3.
So we have two 4-cycles for each cell in the latin square.
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Metamorphosis: complete set 0 (mod 24)

Want a complete set (four pairings of 4-cycles) for 2K6,6.

0 1 2

0 0 1 2
1 2 0 1
2 1 2 0

b

b

b

2

d

d

d

0
1
2

0
1
2

a

a

a

c

c

c

0

0
1
2

1

If cell (x, y) in the latin square contains s, we take two 4-cycles:
(xa, yb, xc, sd) and (xa, yb, (x + 1)c, (s + 2)d), addition mod 3.
So we have two 4-cycles for each cell in the latin square.

Above two: (1a, 2b, 1c, 1d), (1a, 2b, (1 + 1)c, (1 + 2)d).
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Metamorphosis: complete set 0 (mod 24)

Want a complete set (four pairings of 4-cycles) for 2K6,6.

0 1 2

0 0 1 2
1 2 0 1
2 1 2 0

b

b

b

2

d

d

d

0
1
2

0
1
2

a

a

a

c

c

c

0

0
1
2

1

If cell (x, y) in the latin square contains s, we take two 4-cycles:
(xa, yb, xc, sd) and (xa, yb, (x + 1)c, (s + 2)d), addition mod 3.
So we have two 4-cycles for each cell in the latin square.

Above two: (1a, 2b, 1c, 1d), (1a, 2b, (1 + 1)c, (1 + 2)d).

Need four metamorphoses:
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Metamorphosis: complete set 0 (mod 24), K6,6

Recall: If cell (x, y) in the latin square contains s, we take two 4-cycles:
(xa, yb, xc, sd) and (xa, yb, (x + 1)c, (s + 2)d), addition mod 3.
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Metamorphosis: complete set 0 (mod 24), K6,6

Recall: If cell (x, y) in the latin square contains s, we take two 4-cycles:
(xa, yb, xc, sd) and (xa, yb, (x + 1)c, (s + 2)d), addition mod 3.

Metamorphosis (A): Use the pairs xa yb; have all 9 double edges of this type,
and there is an easy 6-cycle decomposition of 2K3,3 into three 6-cycles:
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Metamorphosis: complete set 0 (mod 24), K6,6

Recall: If cell (x, y) in the latin square contains s, we take two 4-cycles:
(xa, yb, xc, sd) and (xa, yb, (x + 1)c, (s + 2)d), addition mod 3.

Metamorphosis (A): Use the pairs xa yb; have all 9 double edges of this type,
and there is an easy 6-cycle decomposition of 2K3,3 into three 6-cycles:
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Metamorphosis: complete set 0 (mod 24), K6,6

Recall: If cell (x, y) in the latin square contains s, we take two 4-cycles:
(xa, yb, xc, sd) and (xa, yb, (x + 1)c, (s + 2)d), addition mod 3.

Metamorphosis (A): Use the pairs xa yb; have all 9 double edges of this type,
and there is an easy 6-cycle decomposition of 2K3,3 into three 6-cycles:
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Metamorphosis: complete set 0 (mod 24), K6,6

Recall: If cell (x, y) in the latin square contains s, we take two 4-cycles:
(xa, yb, xc, sd) and (xa, yb, (x + 1)c, (s + 2)d), addition mod 3.

Metamorphosis (A): Use the pairs xa yb; have all 9 double edges of this type,
and there is an easy 6-cycle decomposition of 2K3,3 into three 6-cycles:
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Metamorphosis: complete set 0 (mod 24), K6,6

Recall: If cell (x, y) in the latin square contains s, we take two 4-cycles:
(xa, yb, xc, sd) and (xa, yb, (x + 1)c, (s + 2)d), addition mod 3.

Metamorphosis (A): Use the pairs xa yb; have all 9 double edges of this type,
and there is an easy 6-cycle decomposition of 2K3,3 into three 6-cycles.

2

b

b

b

d

d

d

0
1
2

0
1
2

a

a

a

c

c

c

1

0
1
2
0
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Metamorphosis: complete set 0 (mod 24), K6,6

Recall: If cell (x, y) in the latin square contains s, we take two 4-cycles:
(xa, yb, xc, sd) and (xa, yb, (x + 1)c, (s + 2)d), addition mod 3.

Metamorphosis (A): Use the pairs xa yb; have all 9 double edges of this type,
and there is an easy 6-cycle decomposition of 2K3,3 into three 6-cycles.

2

b

b

b

d

d

d

0
1
2

0
1
2

a

a

a

c

c

c

1

0
1
2
0

Metamorphosis (B):
Use the pairs xa sd; have all 9 double edges
of this type; use 6-cycle system of 2K3,3.
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Metamorphosis: complete set 0 (mod 24), K6,6

Recall: If cell (x, y) in the latin square contains s, we take two 4-cycles:
(xa, yb, xc, sd) and (xa, yb, (x + 1)c, (s + 2)d), addition mod 3.

Metamorphosis (A): Use the pairs xa yb; have all 9 double edges of this type,
and there is an easy 6-cycle decomposition of 2K3,3 into three 6-cycles.

2

b

b

b

d

d

d

0
1
2

0
1
2

a

a

a

c

c

c

1

0
1
2
0
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Recall: If cell (x, y) in the latin square contains s, we take two 4-cycles:
(xa, yb, xc, sd) and (xa, yb, (x + 1)c, (s + 2)d), addition mod 3.

Metamorphosis (A): Use the pairs xa yb; have all 9 double edges of this type,
and there is an easy 6-cycle decomposition of 2K3,3 into three 6-cycles.
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0

Metamorphosis (B):
Use the pairs xa sd; have all 9 double edges
of this type; use 6-cycle system of 2K3,3.

Metamorphosis (C):
Use the pairs xc yb; then as above get 6-cycles.

Metamorphosis (D):
Use the pairs xc sd; then as above get 6-cycles.

So we have a complete set of (four) metamorphoses from this one twofold
4-cycle decomposition of 2K6,6.
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Metamorphosis: complete set 0 (mod 24)

So using complete sets of 2K24 and K6,6 we have 2K24m:

24

m4

m4

m4

2K 2K24 2K24

2K6,6

2K24

73



Metamorphosis: complete set 0,1,9,16 (mod 24)

1 (mod 24) is similar (use 2K25 and have an “infinity” point).
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Metamorphosis: complete set 0,1,9,16 (mod 24)

1 (mod 24) is similar (use 2K25 and have an “infinity” point).

9 and 16 (mod 24) are slightly more fiddly . . .
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Theorem There exists a twofold 4-cycle decomposition of 2Kn with four
separate pairings to give metamorphoses into 6-cycle systems, so that the
collection of 6-cycles formed from the repeated edges in all four
metamorphoses themselves form a decomposition of 2Kn,
if and only if n ≡ 0,1,9,16 (mod 24), n 6= 9.
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collection of 6-cycles formed from the repeated edges in all four
metamorphoses themselves form a decomposition of 2Kn,
if and only if n ≡ 0,1,9,16 (mod 24), n 6= 9.

In other words . . .
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Theorem There exists a complete set of metamorphoses of
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Metamorphosis: complete set 0,1,9,16 (mod 24)

1 (mod 24) is similar (use 2K25 and have an “infinity” point).

9 and 16 (mod 24) are slightly more fiddly . . .

Theorem There exists a complete set of metamorphoses of
a twofold 4-cycle system of 2Kn into twofold 6-cycle systems
if and only if n ≡ 0,1,9,16 (mod 24), n 6= 9.

(four pairings)

Also complete sets found for:
twofold paired 3-cycles into 4-cycles
(Lindner, Meszka, Rosa);

and paired K1,3 into 4-cycles (EJB, Khodkar, Lindner).
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(A) Find a metamorphosis from a paired 2-fold k-cycle system to a
2-fold (2k − 2)-cycle system, of all admissible orders
(orders at least 0 and 1 (mod k(2k − 2))).
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k = 4: Yazıcı, 2005
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What about arbitrary k ?
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systems, so that the k sets of removed double edges precisely cover 2Kn.
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Open Problem: metamorphosis from theta graph design to cycle system

Θ(a, b, c) is a cycle of length b + c with a path of length a joining vertices
distance b (or c) apart.
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Open Problem: metamorphosis from theta graph design to cycle system

Θ(a, b, c) is a cycle of length b + c with a path of length a joining vertices
distance b (or c) apart.

Θ(1, 2, 2) = K4 − e Θ(1, 3, 3) Θ(1, 4, 4)

Some results on existence of theta graphs Θ(1, k, k) of order n:
k odd and n ≡ 0 (mod 2k + 1), but not Θ(1, 3, 3) of order 7;
k odd and n ≡ 1 (mod (2k + 1)), some results.

Blinco, 2001
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k odd and n ≡ 0 (mod 2k + 1), but not Θ(1, 3, 3) of order 7;
k odd and n ≡ 1 (mod (2k + 1)), some results.

Blinco, 2001

(a) Complete the existence work on Θ designs of type Θ(1, k, k).
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Open Problem: metamorphosis from theta graph design to cycle system

Θ(a, b, c) is a cycle of length b + c with a path of length a joining vertices
distance b (or c) apart.

Θ(1, 2, 2) = K4 − e Θ(1, 3, 3) Θ(1, 4, 4)

Some results on existence of theta graphs Θ(1, k, k) of order n:
k odd and n ≡ 0 (mod 2k + 1), but not Θ(1, 3, 3) of order 7;
k odd and n ≡ 1 (mod (2k + 1)), some results.

Blinco, 2001

(a) Complete the existence work on Θ designs of type Θ(1, k, k).

(b) What about a metamorphosis, from a Θ(1, k, k) design of order n into
a 2k-cycle design (or packing) of order n ?
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Open Problem: resolvable metamorphosis

Example: resolvable K4-design of order 16 (an affine plane of order 4, or a (16,20,5,4,1)

BIBD); find a metamorphosis into a resolvable maximum packing with 4-cycles.
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Open Problem: resolvable metamorphosis

Example: resolvable K4-design of order 16 (an affine plane of order 4, or a (16,20,5,4,1)

BIBD); find a metamorphosis into a resolvable maximum packing with 4-cycles.
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Open Problem: resolvable metamorphosis

Example: resolvable K4-design of order 16 (an affine plane of order 4, or a (16,20,5,4,1)

BIBD); find a metamorphosis into a resolvable maximum packing with 4-cycles.
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Open Problem: resolvable metamorphosis

Example: resolvable K4-design of order 16 (an affine plane of order 4, or a (16,20,5,4,1)

BIBD); find a metamorphosis into a resolvable maximum packing with 4-cycles.
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Open Problem: resolvable metamorphosis

Example: resolvable K4-design of order 16 (an affine plane of order 4, or a (16,20,5,4,1)

BIBD); find a metamorphosis into a resolvable maximum packing with 4-cycles.
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Open Problem: resolvable metamorphosis

Example: resolvable K4-design of order 16 (an affine plane of order 4, or a (16,20,5,4,1)

BIBD); find a metamorphosis into a resolvable maximum packing with 4-cycles.

13 14

16 15

11

109

6

14

13 9

16

15

84

11

73

10

62

51

12

1 2

34

5

78

1

12 13 10 14

4

15

16

14

2

15 13

1614

8

13

9 14 16

8

1512

4

11

1 3 6

13

75

10

2

15

82

12

71

74

9

83

12

5

16 11

6

11

11

5

12

63

9

72

10

1

9

64

10

53

88



Open Problem: resolvable metamorphosis

Example: resolvable K4-design of order 16 (an affine plane of order 4, or a (16,20,5,4,1)

BIBD); find a metamorphosis into a resolvable maximum packing with 4-cycles.

16

6

913

16

12

13 14

15

11

10

4

15

8

11

73

10

6

1 5

2

1 2

34

5

78

9

14

13 10 14

4

15

16

14

2

15 13

1614

8

13

1512

14 16

8

1512

4

11

1 3 6

13

75

10

2

9

11

2

12

71

74

9

83

12

5

16 11

61

8

5

12

63

9

72

10

1

9

64

10

53

11

89



Open Problem: resolvable metamorphosis

Example: resolvable K4-design of order 16 (an affine plane of order 4, or a (16,20,5,4,1)

BIBD); find a metamorphosis into a resolvable maximum packing with 4-cycles.
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Open Problem: resolvable metamorphosis

Example: resolvable K4-design of order 16 (an affine plane of order 4, or a (16,20,5,4,1)

BIBD); find a metamorphosis into a resolvable maximum packing with 4-cycles.
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Open Problem: resolvable metamorphosis

Example: resolvable K4-design of order 16 (an affine plane of order 4, or a (16,20,5,4,1)

BIBD); find a metamorphosis into a resolvable maximum packing with 4-cycles.
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Open Problem: resolvable metamorphosis

Example: resolvable K4-design of order 16 (an affine plane of order 4, or a (16,20,5,4,1)

BIBD); find a metamorphosis into a resolvable maximum packing with 4-cycles.
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order 12n + 4,
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maximum packing with

4-cycles (of same order)

and leave a 1-factor.
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In general, take a

resolvable K4-design of

order 12n + 4,

and find a metamorphosis

into a resolvable

maximum packing with

4-cycles (of same order)

and leave a 1-factor.

Resolvable 4-cycle systems, almost resolvable 4-cycle systems, and packings/coverings of

these: existence has recently been dealt with. But that’s another story!
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